Page 11234..1020..»

Nanobiotechnology – Wikipedia

§ November 22nd, 2016 § Filed under Nano Medicine § Tagged Comments Off on Nanobiotechnology – Wikipedia

Nanobiotechnology, bionanotechnology, and nanobiology are terms that refer to the intersection of nanotechnology and biology.[1] Given that the subject is one that has only emerged very recently, bionanotechnology and nanobiotechnology serve as blanket terms for various related technologies.

This discipline helps to indicate the merger of biological research with various fields of nanotechnology. Concepts that are enhanced through nanobiology include: nanodevices (such as biological machines), nanoparticles, and nanoscale phenomena that occurs within the discipline of nanotechnology. This technical approach to biology allows scientists to imagine and create systems that can be used for biological research. Biologically inspired nanotechnology uses biological systems as the inspirations for technologies not yet created.[2] However, as with nanotechnology and biotechnology, bionanotechnology does have many potential ethical issues associated with it.

The most important objectives that are frequently found in nanobiology involve applying nanotools to relevant medical/biological problems and refining these applications. Developing new tools, such as peptoid nanosheets, for medical and biological purposes is another primary objective in nanotechnology. New nanotools are often made by refining the applications of the nanotools that are already being used. The imaging of native biomolecules, biological membranes, and tissues is also a major topic for the nanobiology researchers. Other topics concerning nanobiology include the use of cantilever array sensors and the application of nanophotonics for manipulating molecular processes in living cells.[3]

Recently, the use of microorganisms to synthesize functional nanoparticles has been of great interest. Microorganisms can change the oxidation state of metals. These microbial processes have opened up new opportunities for us to explore novel applications, for example, the biosynthesis of metal nanomaterials. In contrast to chemical and physical methods, microbial processes for synthesizing nanomaterials can be achieved in aqueous phase under gentle and environmentally benign conditions. This approach has become an attractive focus in current green bionanotechnology research towards sustainable development.[4]

The terms are often used interchangeably. When a distinction is intended, though, it is based on whether the focus is on applying biological ideas or on studying biology with nanotechnology. Bionanotechnology generally refers to the study of how the goals of nanotechnology can be guided by studying how biological “machines” work and adapting these biological motifs into improving existing nanotechnologies or creating new ones.[5][6] Nanobiotechnology, on the other hand, refers to the ways that nanotechnology is used to create devices to study biological systems.[7]

In other words, nanobiotechnology is essentially miniaturized biotechnology, whereas bionanotechnology is a specific application of nanotechnology. For example, DNA nanotechnology or cellular engineering would be classified as bionanotechnology because they involve working with biomolecules on the nanoscale. Conversely, many new medical technologies involving nanoparticles as delivery systems or as sensors would be examples of nanobiotechnology since they involve using nanotechnology to advance the goals of biology.

The definitions enumerated above will be utilized whenever a distinction between nanobio and bionano is made in this article. However, given the overlapping usage of the terms in modern parlance, individual technologies may need to be evaluated to determine which term is more fitting. As such, they are best discussed in parallel.

Most of the scientific concepts in bionanotechnology are derived from other fields. Biochemical principles that are used to understand the material properties of biological systems are central in bionanotechnology because those same principles are to be used to create new technologies. Material properties and applications studied in bionanoscience include mechanical properties(e.g. deformation, adhesion, failure), electrical/electronic (e.g. electromechanical stimulation, capacitors, energy storage/batteries), optical (e.g. absorption, luminescence, photochemistry), thermal (e.g. thermomutability, thermal management), biological (e.g. how cells interact with nanomaterials, molecular flaws/defects, biosensing, biological mechanisms s.a. mechanosensing), nanoscience of disease (e.g. genetic disease, cancer, organ/tissue failure), as well as computing (e.g. DNA computing)and agriculture(target delivery of pesticides, hormones and fertilizers.[8] The impact of bionanoscience, achieved through structural and mechanistic analyses of biological processes at nanoscale, is their translation into synthetic and technological applications through nanotechnology.

Nano-biotechnology takes most of its fundamentals from nanotechnology. Most of the devices designed for nano-biotechnological use are directly based on other existing nanotechnologies. Nano-biotechnology is often used to describe the overlapping multidisciplinary activities associated with biosensors, particularly where photonics, chemistry, biology, biophysics, nano-medicine, and engineering converge. Measurement in biology using wave guide techniques, such as dual polarization interferometry, are another example.

Applications of bionanotechnology are extremely widespread. Insofar as the distinction holds, nanobiotechnology is much more commonplace in that it simply provides more tools for the study of biology. Bionanotechnology, on the other hand, promises to recreate biological mechanisms and pathways in a form that is useful in other ways.

Nanomedicine is a field of medical science whose applications are increasing more and more thanks to nanorobots and biological machines, which constitute a very useful tool to develop this area of knowledge. In the past years, researchers have done many improvements in the different devices and systems required to develop nanorobots. This supposes a new way of treating and dealing with diseases such as cancer; thanks to nanorobots, side effects of chemotherapy have been controlled, reduced and even eliminated, so some years from now, cancer patients will be offered an alternative to treat this disease instead of chemotherapy, which causes secondary effects such as hair loss, fatigue or nausea killing not only cancerous cells but also the healthy ones. At a clinical level, cancer treatment with nanomedicine will consist on the supply of nanorobots to the patient through an injection that will seek for cancerous cells leaving untouched the healthy ones. Patients that will be treated through nanomedicine will not notice the presence of this nanomachines inside them; the only thing that is going to be noticeable is the progressive improvement of their health.[9]

Nanobiotechnology (sometimes referred to as nanobiology) is best described as helping modern medicine progress from treating symptoms to generating cures and regenerating biological tissues. Three American patients have received whole cultured bladders with the help of doctors who use nanobiology techniques in their practice. Also, it has been demonstrated in animal studies that a uterus can be grown outside the body and then placed in the body in order to produce a baby. Stem cell treatments have been used to fix diseases that are found in the human heart and are in clinical trials in the United States. There is also funding for research into allowing people to have new limbs without having to resort to prosthesis. Artificial proteins might also become available to manufacture without the need for harsh chemicals and expensive machines. It has even been surmised that by the year 2055, computers may be made out of biochemicals and organic salts.[10]

Another example of current nanobiotechnological research involves nanospheres coated with fluorescent polymers. Researchers are seeking to design polymers whose fluorescence is quenched when they encounter specific molecules. Different polymers would detect different metabolites. The polymer-coated spheres could become part of new biological assays, and the technology might someday lead to particles which could be introduced into the human body to track down metabolites associated with tumors and other health problems. Another example, from a different perspective, would be evaluation and therapy at the nanoscopic level, i.e. the treatment of Nanobacteria (25-200nm sized) as is done by NanoBiotech Pharma.

While nanobiology is in its infancy, there are a lot of promising methods that will rely on nanobiology in the future. Biological systems are inherently nano in scale; nanoscience must merge with biology in order to deliver biomacromolecules and molecular machines that are similar to nature. Controlling and mimicking the devices and processes that are constructed from molecules is a tremendous challenge to face the converging disciplines of nanotechnology.[11] All living things, including humans, can be considered to be nanofoundries. Natural evolution has optimized the “natural” form of nanobiology over millions of years. In the 21st century, humans have developed the technology to artificially tap into nanobiology. This process is best described as “organic merging with synthetic.” Colonies of live neurons can live together on a biochip device; according to research from Dr. Gunther Gross at the University of North Texas. Self-assembling nanotubes have the ability to be used as a structural system. They would be composed together with rhodopsins; which would facilitate the optical computing process and help with the storage of biological materials. DNA (as the software for all living things) can be used as a structural proteomic system – a logical component for molecular computing. Ned Seeman – a researcher at New York University – along with other researchers are currently researching concepts that are similar to each other.[12]

DNA nanotechnology is one important example of bionanotechnology.[13] The utilization of the inherent properties of nucleic acids like DNA to create useful materials is a promising area of modern research. Another important area of research involves taking advantage of membrane properties to generate synthetic membranes. Proteins that self-assemble to generate functional materials could be used as a novel approach for the large-scale production of programmable nanomaterials. One example is the development of amyloids found in bacterial biofilms as engineered nanomaterials that can be programmed genetically to have different properties.[14]Protein folding studies provide a third important avenue of research, but one that has been largely inhibited by our inability to predict protein folding with a sufficiently high degree of accuracy. Given the myriad uses that biological systems have for proteins, though, research into understanding protein folding is of high importance and could prove fruitful for bionanotechnology in the future.

Lipid nanotechnology is another major area of research in bionanotechnology, where physico-chemical properties of lipids such as their antifouling and self-assembly is exploited to build nanodevices with applications in medicine and engineering.[15]

Meanwhile, nanotechnology application to biotechnology will also leave no field untouched by its groundbreaking scientific innovations for human wellness; the agricultural industry is no exception. Basically, nanomaterials are distinguished depending on the origin: natural, incidental and engineered nanoparticles. Among these, engineered nanoparticles have received wide attention in all fields of science, including medical, materials and agriculture technology with significant socio-economical growth. In the agriculture industry, engineered nanoparticles have been serving as nano carrier, containing herbicides, chemicals, or genes, which target particular plant parts to release their content.[16] Previously nanocapsules containing herbicides have been reported to effectively penetrate through cuticles and tissues, allowing the slow and constant release of the active substances. Likewise, other literature describes that nano-encapsulated slow release of fertilizers has also become a trend to save fertilizer consumption and to minimize environmental pollution through precision farming. These are only a few examples from numerous research works which might open up exciting opportunities for nanobiotechnology application in agriculture. Also, application of this kind of engineered nanoparticles to plants should be considered the level of amicability before it is employed in agriculture practices. Based on a thorough literature survey, it was understood that there is only limited authentic information available to explain the biological consequence of engineered nanoparticles on treated plants. Certain reports underline the phytotoxicity of various origin of engineered nanoparticles to the plant caused by the subject of concentrations and sizes . At the same time, however, an equal number of studies were reported with a positive outcome of nanoparticles, which facilitate growth promoting nature to treat plant.[17] In particular, compared to other nanoparticles, silver and gold nanoparticles based applications elicited beneficial results on various plant species with less and/or no toxicity.[18][19] Silver nanoparticles (AgNPs) treated leaves of Asparagus showed the increased content of ascorbate and chlorophyll. Similarly, AgNPs-treated common bean and corn has increased shoot and root length, leaf surface area, chlorophyll, carbohydrate and protein contents reported earlier.[20] The gold nanoparticle has been used to induce growth and seed yield in Brassica juncea.[21]

This field relies on a variety of research methods, including experimental tools (e.g. imaging, characterization via AFM/optical tweezers etc.), x-ray diffraction based tools, synthesis via self-assembly, characterization of self-assembly (using e.g. MP-SPR, DPI, recombinant DNA methods, etc.), theory (e.g. statistical mechanics, nanomechanics, etc.), as well as computational approaches (bottom-up multi-scale simulation, supercomputing).

The rest is here:
Nanobiotechnology – Wikipedia

Read the Rest...

Future Medicine, Ltd.

§ November 7th, 2016 § Filed under Nano Medicine § Tagged Comments Off on Future Medicine, Ltd.

This site uses cookies to improve performance. If your browser does not accept cookies, you cannot view this site.

There are many reasons why a cookie could not be set correctly. Below are the most common reasons:

This site uses cookies to improve performance by remembering that you are logged in when you go from page to page. To provide access without cookies would require the site to create a new session for every page you visit, which slows the system down to an unacceptable level.

This site stores nothing other than an automatically generated session ID in the cookie; no other information is captured.

In general, only the information that you provide, or the choices you make while visiting a web site, can be stored in a cookie. For example, the site cannot determine your email name unless you choose to type it. Allowing a website to create a cookie does not give that or any other site access to the rest of your computer, and only the site that created the cookie can read it.

See the original post:
Future Medicine, Ltd.

Read the Rest...

Life extension – Wikipedia

§ November 5th, 2016 § Filed under Nano Medicine § Tagged Comments Off on Life extension – Wikipedia

Life extension science, also known as anti-aging medicine, indefinite life extension, experimental gerontology, and biomedical gerontology, is the study of slowing down or reversing the processes of aging to extend both the maximum and average lifespan. Some researchers in this area, and “life extensionists”, “immortalists” or “longevists” (those who wish to achieve longer lives themselves), believe that future breakthroughs in tissue rejuvenation, stem cells, regenerative medicine, molecular repair, gene therapy, pharmaceuticals, and organ replacement (such as with artificial organs or xenotransplantations) will eventually enable humans to have indefinite lifespans (agerasia[1]) through complete rejuvenation to a healthy youthful condition.

The sale of purported anti-aging products such as nutrition, physical fitness, skin care, hormone replacements, vitamins, supplements and herbs is a lucrative global industry, with the US market generating about $50billion of revenue each year.[2] Some medical experts state that the use of such products has not been proven to affect the aging process and many claims regarding the efficacy of these marketed products have been roundly criticized by medical experts, including the American Medical Association.[2][3][4][5][6]

The ethical ramifications of life extension are debated by bioethicists.

During the process of aging, an organism accumulates damage to its macromolecules, cells, tissues, and organs. Specifically, aging is characterized as and thought to be caused by “genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication.”[7]Oxidation damage to cellular contents caused by free radicals is believed to contribute to aging as well.[8][8][9]

The longest a human has ever been proven to live is 122 years, the case of Jeanne Calment who was born in 1875 and died in 1997, whereas the maximum lifespan of a wildtype mouse, commonly used as a model in research on aging, is about three years.[10] Genetic differences between humans and mice that may account for these different aging rates include differences in efficiency of DNA repair, antioxidant defenses, energy metabolism, proteostasis maintenance, and recycling mechanisms such as autophagy.[11]

Average lifespan in a population is lowered by infant and child mortality, which are frequently linked to infectious diseases or nutrition problems. Later in life, vulnerability to accidents and age-related chronic disease such as cancer or cardiovascular disease play an increasing role in mortality. Extension of expected lifespan can often be achieved by access to improved medical care, vaccinations, good diet, exercise and avoidance of hazards such as smoking.

Maximum lifespan is determined by the rate of aging for a species inherent in its genes and by environmental factors. Widely recognized methods of extending maximum lifespan in model organisms such as nematodes, fruit flies, and mice include caloric restriction, gene manipulation, and administration of pharmaceuticals.[12] Another technique uses evolutionary pressures such as breeding from only older members or altering levels of extrinsic mortality.[13][14] Some animals such as hydra, planarian flatworms, and certain sponges, corals, and jellyfish do not die of old age and exhibit potential immortality.[15][16][17][18]

Theoretically, extension of maximum lifespan in humans could be achieved by reducing the rate of aging damage by periodic replacement of damaged tissues, molecular repair or rejuvenation of deteriorated cells and tissues, reversal of harmful epigenetic changes, or the enhancement of telomerase enzyme activity.[19][20]

Research geared towards life extension strategies in various organisms is currently under way at a number of academic and private institutions. Since 2009, investigators have found ways to increase the lifespan of nematode worms and yeast by 10-fold; the record in nematodes was achieved through genetic engineering and the extension in yeast by a combination of genetic engineering and caloric restriction.[21] A 2009 review of longevity research noted: “Extrapolation from worms to mammals is risky at best, and it cannot be assumed that interventions will result in comparable life extension factors. Longevity gains from dietary restriction, or from mutations studied previously, yield smaller benefits to Drosophila than to nematodes, and smaller still to mammals. This is not unexpected, since mammals have evolved to live many times the worm’s lifespan, and humans live nearly twice as long as the next longest-lived primate. From an evolutionary perspective, mammals and their ancestors have already undergone several hundred million years of natural selection favoring traits that could directly or indirectly favor increased longevity, and may thus have already settled on gene sequences that promote lifespan. Moreover, the very notion of a “life-extension factor” that could apply across taxa presumes a linear response rarely seen in biology.”[21]

Much life extension research focuses on nutritiondiets or supplementsas a means to extend lifespan, although few of these have been systematically tested for significant longevity effects. The many diets promoted by anti-aging advocates are often contradictory.[original research?] A dietary pattern with some support from scientific research is caloric restriction.[22][23]

Preliminary studies of caloric restriction on humans using surrogate measurements have provided evidence that caloric restriction may have powerful protective effect against secondary aging in humans. Caloric restriction in humans may reduce the risk of developing Type 2 diabetes and atherosclerosis.[24]

The free-radical theory of aging suggests that antioxidant supplements, such as vitaminC, vitaminE, Q10, lipoic acid, carnosine, and N-acetylcysteine, might extend human life. However, combined evidence from several clinical trials suggest that -carotene supplements and high doses of vitaminE increase mortality rates.[25]Resveratrol is a sirtuin stimulant that has been shown to extend life in animal models, but the effect of resveratrol on lifespan in humans is unclear as of 2011.[26]

There are many traditional herbs purportedly used to extend the health-span, including a Chinese tea called Jiaogulan (Gynostemma pentaphyllum), dubbed “China’s Immortality Herb.”[27]Ayurveda, the traditional Indian system of medicine, describes a class of longevity herbs called rasayanas, including Bacopa monnieri, Ocimum sanctum, Curcuma longa, Centella asiatica, Phyllanthus emblica, Withania somnifera and many others.[27]

The anti-aging industry offers several hormone therapies. Some of these have been criticized for possible dangers to the patient and a lack of proven effect. For example, the American Medical Association has been critical of some anti-aging hormone therapies.[2]

Although some recent clinical studies have shown that low-dose growth hormone (GH) treatment for adults with GH deficiency changes the body composition by increasing muscle mass, decreasing fat mass, increasing bone density and muscle strength, improves cardiovascular parameters (i.e. decrease of LDL cholesterol), and affects the quality of life without significant side effects,[28][29][30] the evidence for use of growth hormone as an anti-aging therapy is mixed and based on animal studies. There are mixed reports that GH or IGF-1 signaling modulates the aging process in humans and about whether the direction of its effect is positive or negative.[31]

Some critics dispute the portrayal of aging as a disease. For example, Leonard Hayflick, who determined that fibroblasts are limited to around 50cell divisions, reasons that aging is an unavoidable consequence of entropy. Hayflick and fellow biogerontologists Jay Olshansky and Bruce Carnes have strongly criticized the anti-aging industry in response to what they see as unscrupulous profiteering from the sale of unproven anti-aging supplements.[4]

Politics relevant to the substances of life extension pertain mostly to communications and availability.[citation needed]

In the United States, product claims on food and drug labels are strictly regulated. The First Amendment (freedom of speech) protects third-party publishers’ rights to distribute fact, opinion and speculation on life extension practices. Manufacturers and suppliers also provide informational publications, but because they market the substances, they are subject to monitoring and enforcement by the Federal Trade Commission (FTC), which polices claims by marketers. What constitutes the difference between truthful and false claims is hotly debated and is a central controversy in this arena.[citation needed]

Research by Sobh and Martin (2011) suggests that people buy anti-aging products to obtain a hoped-for self (e.g., keeping a youthful skin) or to avoid a feared-self (e.g., looking old). The research shows that when consumers pursue a hoped-for self, it is expectations of success that most strongly drive their motivation to use the product. The research also shows why doing badly when trying to avoid a feared self is more motivating than doing well. Interestingly, when product use is seen to fail it is more motivating than success when consumers seek to avoid a feared-self.[32]

The best-characterized anti-aging therapy was, and still is, CR. In some studies calorie restriction has been shown to extend the life of mice, yeast, and rhesus monkeys significantly.[33][34] However, a more recent study has shown that in contrast, calorie restriction has not improved the survival rate in rhesus monkeys.[35] Long-term human trials of CR are now being done. It is the hope of the anti-aging researchers that resveratrol, found in grapes, or pterostilbene, a more bio-available substance, found in blueberries, as well as rapamycin, a biotic substance discovered on Easter Island, may act as CR mimetics to increase the life span of humans.[36]

More recent work reveals that the effects long attributed to caloric restriction may be obtained by restriction of protein alone, and specifically of just the sulfur-containing amino acids cysteine and methionine.[37][38] Current research is into the metabolic pathways affected by variation in availability of products of these amino acids.

There are a number of chemicals intended to slow the aging process currently being studied in animal models.[39] One type of research is related to the observed effects a calorie restriction (CR) diet, which has been shown to extend lifespan in some animals[40] Based on that research, there have been attempts to develop drugs that will have the same effect on the aging process as a caloric restriction diet, which are known as Caloric restriction mimetic drugs. Some drugs that are already approved for other uses have been studied for possible longevity effects on laboratory animals because of a possible CR-mimic effect; they include rapamycin,[41]metformin and other geroprotectors.[42]MitoQ, Resveratrol and pterostilbene are dietary supplements that have also been studied in this context.[36][43][44]

Other attempts to create anti-aging drugs have taken different research paths. One notable direction of research has been research into the possibility of using the enzyme telomerase in order to counter the process of telomere shortening.[45] However, there are potential dangers in this, since some research has also linked telomerase to cancer and to tumor growth and formation.[46] In addition, some preparations, called senolytics are designed to effectively deplete senescent cells which poison an organism by their secretions.[47]

Future advances in nanomedicine could give rise to life extension through the repair of many processes thought to be responsible for aging. K. Eric Drexler, one of the founders of nanotechnology, postulated cell repair machines, including ones operating within cells and utilizing as yet hypothetical molecular computers, in his 1986 book Engines of Creation. Raymond Kurzweil, a futurist and transhumanist, stated in his book The Singularity Is Near that he believes that advanced medical nanorobotics could completely remedy the effects of aging by 2030.[48] According to Richard Feynman, it was his former graduate student and collaborator Albert Hibbs who originally suggested to him (circa 1959) the idea of a medical use for Feynman’s theoretical micromachines (see nanotechnology). Hibbs suggested that certain repair machines might one day be reduced in size to the point that it would, in theory, be possible to (as Feynman put it) “swallow the doctor”. The idea was incorporated into Feynman’s 1959 essay There’s Plenty of Room at the Bottom.[49]

Some life extensionists suggest that therapeutic cloning and stem cell research could one day provide a way to generate cells, body parts, or even entire bodies (generally referred to as reproductive cloning) that would be genetically identical to a prospective patient. Recently, the US Department of Defense initiated a program to research the possibility of growing human body parts on mice.[50] Complex biological structures, such as mammalian joints and limbs, have not yet been replicated. Dog and primate brain transplantation experiments were conducted in the mid-20th century but failed due to rejection and the inability to restore nerve connections. As of 2006, the implantation of bio-engineered bladders grown from patients’ own cells has proven to be a viable treatment for bladder disease.[51] Proponents of body part replacement and cloning contend that the required biotechnologies are likely to appear earlier than other life-extension technologies.

The use of human stem cells, particularly embryonic stem cells, is controversial. Opponents’ objections generally are based on interpretations of religious teachings or ethical considerations. Proponents of stem cell research point out that cells are routinely formed and destroyed in a variety of contexts. Use of stem cells taken from the umbilical cord or parts of the adult body may not provoke controversy.[52]

The controversies over cloning are similar, except general public opinion in most countries stands in opposition to reproductive cloning. Some proponents of therapeutic cloning predict the production of whole bodies, lacking consciousness, for eventual brain transplantation.

Replacement of biological (susceptible to diseases) organs with mechanical ones could extend life. This is the goal of 2045 Initiative.[53]

For cryonicists (advocates of cryopreservation), storing the body at low temperatures after death may provide an “ambulance” into a future in which advanced medical technologies may allow resuscitation and repair. They speculate cryogenic temperatures will minimize changes in biological tissue for many years, giving the medical community ample time to cure all disease, rejuvenate the aged and repair any damage that is caused by the cryopreservation process.

Many cryonicists do not believe that legal death is “real death” because stoppage of heartbeat and breathingthe usual medical criteria for legal deathoccur before biological death of cells and tissues of the body. Even at room temperature, cells may take hours to die and days to decompose. Although neurological damage occurs within 46 minutes of cardiac arrest, the irreversible neurodegenerative processes do not manifest for hours.[54] Cryonicists state that rapid cooling and cardio-pulmonary support applied immediately after certification of death can preserve cells and tissues for long-term preservation at cryogenic temperatures. People, particularly children, have survived up to an hour without heartbeat after submersion in ice water. In one case, full recovery was reported after 45 minutes underwater.[55] To facilitate rapid preservation of cells and tissue, cryonics “standby teams” are available to wait by the bedside of patients who are to be cryopreserved to apply cooling and cardio-pulmonary support as soon as possible after declaration of death.[56]

No mammal has been successfully cryopreserved and brought back to life, with the exception of frozen human embryos. Resuscitation of a postembryonic human from cryonics is not possible with current science. Some scientists still support the idea based on their expectations of the capabilities of future science.[57][58]

Another proposed life extension technology would combine existing and predicted future biochemical and genetic techniques. SENS proposes that rejuvenation may be obtained by removing aging damage via the use of stem cells and tissue engineering, telomere-lengthening machinery, allotopic expression of mitochondrial proteins, targeted ablation of cells, immunotherapeutic clearance, and novel lysosomal hydrolases.[59]

While many biogerontologists find these ideas “worthy of discussion”[60][61] and SENS conferences feature important research in the field,[62][63] some contend that the alleged benefits are too speculative given the current state of technology, referring to it as “fantasy rather than science”.[3][5]

Gene therapy, in which nucleic acid polymers are delivered as a drug and are either expressed as proteins, interfere with the expression of proteins, or correct genetic mutations, has been proposed as a future strategy to prevent aging.[64][65]

A large array of genetic modifications have been found to increase lifespan in model organisms such as yeast, nematode worms, fruit flies, and mice. As of 2013, the longest extension of life caused by a single gene manipulation was roughly 150% in mice and 10-fold in nematode worms.[66]

In The Selfish Gene, Richard Dawkins describes an approach to life-extension that involves “fooling genes” into thinking the body is young.[67] Dawkins attributes inspiration for this idea to Peter Medawar. The basic idea is that our bodies are composed of genes that activate throughout our lifetimes, some when we are young and others when we are older. Presumably, these genes are activated by environmental factors, and the changes caused by these genes activating can be lethal. It is a statistical certainty that we possess more lethal genes that activate in later life than in early life. Therefore, to extend life, we should be able to prevent these genes from switching on, and we should be able to do so by “identifying changes in the internal chemical environment of a body that take place during aging… and by simulating the superficial chemical properties of a young body”.[68]

According to some lines of thinking, the ageing process is routed into a basic reduction of biological complexity,[69] and thus loss of information. In order to reverse this loss, gerontologist Marios Kyriazis suggested that it is necessary to increase input of actionable and meaningful information both individually (into individual brains),[70] and collectively (into societal systems).[71] This technique enhances overall biological function through up-regulation of immune, hormonal, antioxidant and other parameters, resulting in improved age-repair mechanisms. Working in parallel with natural evolutionary mechanisms that can facilitate survival through increased fitness, Kryiazis claims that the technique may lead to a reduction of the rate of death as a function of age, i.e. indefinite lifespan.[72]

One hypothetical future strategy that, as some suggest, “eliminates” the complications related to a physical body, involves the copying or transferring (e.g. by progressively replacing neurons with transistors) of a conscious mind from a biological brain to a non-biological computer system or computational device. The basic idea is to scan the structure of a particular brain in detail, and then construct a software model of it that is so faithful to the original that, when run on appropriate hardware, it will behave in essentially the same way as the original brain.[73] Whether or not an exact copy of one’s mind constitutes actual life extension is matter of debate.

The extension of life has been a desire of humanity and a mainstay motif in the history of scientific pursuits and ideas throughout history, from the Sumerian Epic of Gilgamesh and the Egyptian Smith medical papyrus, all the way through the Taoists, Ayurveda practitioners, alchemists, hygienists such as Luigi Cornaro, Johann Cohausen and Christoph Wilhelm Hufeland, and philosophers such as Francis Bacon, Ren Descartes, Benjamin Franklin and Nicolas Condorcet. However, the beginning of the modern period in this endeavor can be traced to the end of the 19th beginning of the 20th century, to the so-called fin-de-sicle (end of the century) period, denoted as an end of an epoch and characterized by the rise of scientific optimism and therapeutic activism, entailing the pursuit of life extension (or life-extensionism). Among the foremost researchers of life extension at this period were the Nobel Prize winning biologist Elie Metchnikoff (1845-1916) — the author of the cell theory of immunity and vice director of Institut Pasteur in Paris, and Charles-douard Brown-Squard (1817-1894) — the president of the French Biological Society and one of the founders of modern endocrinology.[74]

Sociologist James Hughes claims that science has been tied to a cultural narrative of conquering death since the Age of Enlightenment. He cites Francis Bacon (15611626) as an advocate of using science and reason to extend human life, noting Bacon’s novel New Atlantis, wherein scientists worked toward delaying aging and prolonging life. Robert Boyle (16271691), founding member of the Royal Society, also hoped that science would make substantial progress with life extension, according to Hughes, and proposed such experiments as “to replace the blood of the old with the blood of the young”. Biologist Alexis Carrel (18731944) was inspired by a belief in indefinite human lifespan that he developed after experimenting with cells, says Hughes.[75]

In 1970, the American Aging Association was formed under the impetus of Denham Harman, originator of the free radical theory of aging. Harman wanted an organization of biogerontologists that was devoted to research and to the sharing of information among scientists interested in extending human lifespan.

In 1976, futurists Joel Kurtzman and Philip Gordon wrote No More Dying. The Conquest Of Aging And The Extension Of Human Life, (ISBN 0-440-36247-4) the first popular book on research to extend human lifespan. Subsequently, Kurtzman was invited to testify before the House Select Committee on Aging, chaired by Claude Pepper of Florida, to discuss the impact of life extension on the Social Security system.

Saul Kent published The Life Extension Revolution (ISBN 0-688-03580-9) in 1980 and created a nutraceutical firm called the Life Extension Foundation, a non-profit organization that promotes dietary supplements. The Life Extension Foundation publishes a periodical called Life Extension Magazine. The 1982 bestselling book Life Extension: A Practical Scientific Approach (ISBN 0-446-51229-X) by Durk Pearson and Sandy Shaw further popularized the phrase “life extension”.

In 1983, Roy Walford, a life-extensionist and gerontologist, published a popular book called Maximum Lifespan. In 1988, Walford and his student Richard Weindruch summarized their research into the ability of calorie restriction to extend the lifespan of rodents in The Retardation of Aging and Disease by Dietary Restriction (ISBN 0-398-05496-7). It had been known since the work of Clive McCay in the 1930s that calorie restriction can extend the maximum lifespan of rodents. But it was the work of Walford and Weindruch that gave detailed scientific grounding to that knowledge.[citation needed] Walford’s personal interest in life extension motivated his scientific work and he practiced calorie restriction himself. Walford died at the age of 80 from complications caused by amyotrophic lateral sclerosis.

Money generated by the non-profit Life Extension Foundation allowed Saul Kent to finance the Alcor Life Extension Foundation, the world’s largest cryonics organization. The cryonics movement had been launched in 1962 by Robert Ettinger’s book, The Prospect of Immortality. In the 1960s, Saul Kent had been a co-founder of the Cryonics Society of New York. Alcor gained national prominence when baseball star Ted Williams was cryonically preserved by Alcor in 2002 and a family dispute arose as to whether Williams had really wanted to be cryopreserved.

Regulatory and legal struggles between the Food and Drug Administration (FDA) and the Life Extension Foundation included seizure of merchandise and court action. In 1991, Saul Kent and Bill Faloon, the principals of the Foundation, were jailed. The LEF accused the FDA of perpetrating a “Holocaust” and “seeking gestapo-like power” through its regulation of drugs and marketing claims.[76]

In 2003, Doubleday published “The Immortal Cell: One Scientist’s Quest to Solve the Mystery of Human Aging,” by Michael D. West. West emphasised the potential role of embryonic stem cells in life extension.[77]

Other modern life extensionists include writer Gennady Stolyarov, who insists that death is “the enemy of us all, to be fought with medicine, science, and technology”;[78]transhumanist philosopher Zoltan Istvan, who proposes that the “transhumanist must safeguard one’s own existence above all else”;[79] futurist George Dvorsky, who considers aging to be a problem that desperately needs to be solved;[80] and recording artist Steve Aoki, who has been called “one of the most prolific campaigners for life extension”.[81]

In 1991, the American Academy of Anti-Aging Medicine (A4M) was formed as a non-profit organization to create what it considered an anti-aging medical specialty distinct from geriatrics, and to hold trade shows for physicians interested in anti-aging medicine. The A4M trains doctors in anti-aging medicine and publicly promotes the field of anti-aging research. It has about 26,000 members, of whom about 97% are doctors and scientists.[82] The American Board of Medical Specialties recognizes neither anti-aging medicine nor the A4M’s professional standing.[83]

In 2003, Aubrey de Grey and David Gobel formed the Methuselah Foundation, which gives financial grants to anti-aging research projects. In 2009, de Grey and several others founded the SENS Research Foundation, a California-based scientific research organization which conducts research into aging and funds other anti-aging research projects at various universities.[84] In 2013, Google announced Calico, a new company based in San Francisco that will harness new technologies to increase scientific understanding of the biology of aging.[85] It is led by Arthur D. Levinson,[86] and its research team includes scientists such as Hal V. Barron, David Botstein, and Cynthia Kenyon. In 2014, biologist Craig Venter founded Human Longevity Inc., a company dedicated to scientific research to end aging through genomics and cell therapy. They received funding with the goal of compiling a comprehensive human genotype, microbiome, and phenotype database.[87]

Aside from private initiatives, aging research is being conducted in university laboratories, and includes universities such as Harvard and UCLA. University researchers have made a number of breakthroughs in extending the lives of mice and insects by reversing certain aspects of aging.[88][89][90][91]

Though many scientists state[92] that life extension and radical life extension are possible, there are still no international or national programs focused on radical life extension. There are political forces staying for and against life extension. By 2012, in Russia, the United States, Israel, and the Netherlands, the Longevity political parties started. They aimed to provide political support to radical life extension research and technologies, and ensure the fastest possible and at the same time soft transition of society to the next step life without aging and with radical life extension, and to provide access to such technologies to most currently living people.[93]

Leon Kass (chairman of the US President’s Council on Bioethics from 2001 to 2005) has questioned whether potential exacerbation of overpopulation problems would make life extension unethical.[94] He states his opposition to life extension with the words:

“simply to covet a prolonged life span for ourselves is both a sign and a cause of our failure to open ourselves to procreation and to any higher purpose … [The] desire to prolong youthfulness is not only a childish desire to eat one’s life and keep it; it is also an expression of a childish and narcissistic wish incompatible with devotion to posterity.”[95]

John Harris, former editor-in-chief of the Journal of Medical Ethics, argues that as long as life is worth living, according to the person himself, we have a powerful moral imperative to save the life and thus to develop and offer life extension therapies to those who want them.[96]

Transhumanist philosopher Nick Bostrom has argued that any technological advances in life extension must be equitably distributed and not restricted to a privileged few.[97] In an extended metaphor entitled “The Fable of the Dragon-Tyrant”, Bostrom envisions death as a monstrous dragon who demands human sacrifices. In the fable, after a lengthy debate between those who believe the dragon is a fact of life and those who believe the dragon can and should be destroyed, the dragon is finally killed. Bostrom argues that political inaction allowed many preventable human deaths to occur.[98]

Life extension is a controversial topic due to fear of overpopulation and possible effects on society.[99] Biogerontologist Aubrey De Grey counters the overpopulation critique by pointing out that the therapy could postpone or eliminate menopause, allowing women to space out their pregnancies over more years and thus decreasing the yearly population growth rate.[100] Moreover, the philosopher and futurist Max More argues that, given the fact the worldwide population growth rate is slowing down and is projected to eventually stabilize and begin falling, superlongevity would be unlikely to contribute to overpopulation.[99]

A Spring 2013 Pew Research poll in the United States found that 38% of Americans would want life extension treatments, and 56% would reject it. However, it also found that 68% believed most people would want it and that only 4% consider an “ideal lifespan” to be more than 120 years. The median “ideal lifespan” was 91 years of age and the majority of the public (63%) viewed medical advances aimed at prolonging life as generally good. 41% of Americans believed that radical life extension (RLE) would be good for society, while 51% said they believed it would be bad for society.[101] One possibility for why 56% of Americans claim they would reject life extension treatments may be due to the cultural perception that living longer would result in a longer period of decrepitude, and that the elderly in our current society are unhealthy.[102]

Religious people are no more likely to oppose life extension than the unaffiliated,[101] though some variation exists between religious denominations.

Most mainstream medical organizations and practitioners do not consider aging to be a disease. David Sinclair says: “Idon’t see aging as a disease, but as a collection of quite predictable diseases caused by the deterioration of the body”.[103] The two main arguments used are that aging is both inevitable and universal while diseases are not.[104] However, not everyone agrees. Harry R. Moody, Director of Academic Affairs for AARP, notes that what is normal and what is disease strongly depends on a historical context.[105] David Gems, Assistant Director of the Institute of Healthy Ageing, strongly argues that aging should be viewed as a disease.[106] In response to the universality of aging, David Gems notes that it is as misleading as arguing that Basenji are not dogs because they do not bark.[107] Because of the universality of aging he calls it a ‘special sort of disease’. Robert M. Perlman, coined the terms aging syndrome and disease complex in 1954 to describe aging.[108]

The discussion whether aging should be viewed as a disease or not has important implications. It would stimulate pharmaceutical companies to develop life extension therapies and in the United States of America, it would also increase the regulation of the anti-aging market by the FDA. Anti-aging now falls under the regulations for cosmetic medicine which are less tight than those for drugs.[107][109]

See the article here:
Life extension – Wikipedia

Read the Rest...

Cell Therapy Conferences | Spain | Worldwide Events …

§ November 1st, 2016 § Filed under Nano Medicine § Tagged Comments Off on Cell Therapy Conferences | Spain | Worldwide Events …

Track-1 Cell Therapy:

Cell therapyas performed by alternativemedicinepractitioners is very different from the controlled research done by conventionalstem cellmedical researchers. Alternative practitioners refer to their form of cell therapy by several other different names includingxenotransplanttherapy,glandular therapy, and fresh cell therapy. Proponents ofcell therapyclaim that it has been used successfully to rebuild damaged cartilage in joints, repair spinal cord injuries,strengthen a weakenedimmune system, treat autoimmune diseases such as AIDS, and help patients withneurological disorderssuch as Alzheimers disease,Parkinson’s diseaseand epilepsy.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

6th International Conference onTissue Engineering & Regenerative Medicine, Baltimore, USA, Aug 20-22, 2017; 8th World Congress and Expo onCell & Stem Cell Research,Orlando, USA, March 20-22, 2017; 15thWorld Congress on Biotechnology and Biotech Industries Meet,Rome, Italy,March 20-21,2017; 2nd International Conference onGenetic Counselling and Genomic Medicine ,Beijing, China,July 10-12, 2017; International Conference onClinical and Molecular Genetics, Las Vegas, USA, April 24-26, 2017.

Track-2 Gene therapy:

Gene therapyand cell therapy are overlapping fields of biomedical research with the goals of repairing the direct cause of genetic diseases in the DNA orcellularpopulation, respectively. The development of suitablegene therapytreatments for manygenetic diseasesand some acquired diseases has encountered many challenges and uncovered new insights into gene interactions and regulation. Further development often involves uncovering basic scientific knowledge of the affected tissues, cells, and genes, as well as redesigning vectors, formulations, and regulatory cassettes for the genes.Cell therapyis expanding its repertoire of cell types for administration.Cell therapytreatment strategies include isolation and transfer of specific stem cell populations, administration of effector cells, and induction of mature cells to becomepluripotent cells, and reprogramming of mature cells.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

2nd International Conference onMolecular Biology , London, UK ,June 22-24, 2017; 3rd World Bio Summit & Expo, Abu Dhabi, UAE, June 19-21, 2017; 5th International Conference onIntegrative Biology, London, UK, June 19-21, 2017; 2nd World Congress on Human Genetics, Chicago, USA, July 24-26, 2017; 9th International Conference onGenomics and Pharmacogenomics, Chicago, USA, July 13-14, 2017.

Track-3 Cell and gene therapy products:

Articles containing or consisting ofhuman cellsor tissues that are intended for implantation,transplantation, infusion, or transfer to a human recipient.Gene therapiesare novel and complex products that can offer unique challenges in product development. Hence, ongoing communication between the FDA and stakeholders is essential to meet these challenges.Gene therapy productsare being developed around the world, the FDA is engaged in a number of international harmonization activities in this area.

Examples:Musculoskeletal tissue, skin, ocular tissue, human heart valves;vascular graft, dura mater, reproductive tissue/cells, Stem/progenitor cells,somatic cells, Cells transduced withgene therapyvectors , Combination products (e.g., cells or tissue + device)

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

7th International Conference onPlant Genomics, Bangkok, Thailand, July 03-05, 2017; 15th Euro Biotechnology Congress, Valencia, Spain, June 05-07, 2017; International Conference onIntegrative Medicine & Nutrition, Dubai, UAE, May11-13, 2017; 14th Asia-Pacific Biotech Congress, April 10-12, 2017; Beijing, China,15th Biotechnology Congress, Baltimore, USA, June 22-23, 2017.

Track-4 Cellular therapy:

Cellular therapy, also calledlive cell therapy, cellular suspensions, glandular therapy, fresh cell therapy, sick cell therapy,embryonic cell therapy, andorgan therapy- refers to various procedures in which processed tissue from animal embryos, foetuses or organs, is injected or taken orally. Products are obtained from specific organs or tissues said to correspond with the unhealthy organs or tissues of the recipient. Proponents claim that the recipient’s body automatically transports the injected cells to thetarget organs, where they supposedly strengthen them and regenerate their structure. The organs and glands used in cell treatment include brain, pituitary,thyroid, adrenals, thymus, liver,kidney, pancreas, spleen, heart,ovary, testis, and parotid. Several different types of cell or cell extract can be given simultaneously – some practitioners routinely give up to 20 or more at once.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

3rd International Conference onSynthetic Biology, Munich, Germany, July 20-21, 2017; 5th International Conference and Exhibition onCell and Gene Therapy,Madrid, Spain,Mar 2-3, 2017;International Conference onCell Signalling and Cancer Therapy,Paris, France,Aug 20-22, 2017; 7th Annual Conference on Stem Cell and Regenerative Medicine, Paris, France,Aug 04-05, 2016;3rd International Conference & Exhibition onTissue Preservation and Bio banking, Baltimore, USA,June 29-30, 2017.

Track-5 Cancer gene therapy:

Cancer therapiesare drugs or other substances that block the growth and spread ofcancerby interfering with specific molecules (“molecular targets”) that are involved in the growth, progression, and spread ofcancer. Many cancer therapies have been approved by the Food and Drug Administration (FDA) to treat specific types of cancer. The development of targetedtherapiesrequires the identification of good targets that is, targets that play a key role in cancer cell growth and survival. One approach to identify potential targets is to compare the amounts of individualproteinsin cancer cells with those in normal cells.Proteinsthat are present in cancer cells but not normal cells or that are more abundant incancercells would be potential targets, especially if they are known to be involved incell growthor survival.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

2nd Biotechnology World Convention,London, UK,May 25-27, 2017; International Conference on Animal and Human Cell Culture, Jackson Ville, USA, Sep 25-27, 2017; 9th International Conference onCancer Genomics, Chicago, USA, May 29-31, 2017; 6th International Conference onTissue Engineering & Regenerative Medicine, Baltimore, USA, Aug 20-22, 2017; 8th World Congress and Expo onCell & Stem Cell Research, Orlando, USA, March 20-22, 2017.

Track-6 Nano therapy:

Nano Therapymay be defined as the monitoring, repair, construction and control of human biological systems at themolecular level, using engineerednanodevicesand nanostructures. Basic nanostructured materials, engineeredenzymes, and the many products of biotechnology will be enormously useful in near-term medical applications. However, the full promise ofnanomedicineis unlikely to arrive until after the development of precisely controlled or programmable medical Nano machines andnanorobots.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

15thWorld Congress on Biotechnology and Biotech Industries Meet ,Rome, Italy,March 20-21, 2017 ;2nd International Conference onGenetic Counselling and Genomic Medicine ,Beijing, China,July 10-12, 2017; International Conference onClinical and Molecular Genetics, Las Vegas, USA, April 24-26, 2017; 15th Euro Biotechnology Congress, Valencia, Spain, June 05-07, 2017; International Conference onIntegrative Medicine & Nutrition, Dubai, UAE, May11-13, 2017.

Track-7 Skin cell therapy:

Stem cellshave newly become a huge catchphrase in theskincarebiosphere. Skincare specialists are not usingembryonic stem cells; it is impossible to integrate live materials into a skincare product. Instead, scientists are creating products with specialized peptides andenzymesor plantstem cellswhich, when applied topically on the surface, help to protect the human skinstem cellsfrom damage and deterioration or stimulate the skins own stem cells. Currently, the technique is mainly used to save the lives of patients who have third degree burns over very large areas of their bodies.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

5th International Conference and Exhibition onCell and Gene Therapy,Madrid,Spain,Mar 2-3, 2017;International Conference onCell Signalling and Cancer Therapy,Paris, France,Aug 20-22, 2017;2nd Biotechnology World Convention,London, UK,May 25-27, 2017; International Conference on Animal and Human Cell Culture, Jackson Ville, USA, Sep 25-27, 2017; 9th International Conference onCancer Genomics, Chicago, USA, May 29-31, 2017.

Track-8 HIV gene therapy:

Highly activeantiretroviral therapydramatically improves survival inHIV-infected patients. However, persistence of HIV in reservoirs has necessitated lifelong treatment that can be complicated bycumulative toxicities, incomplete immune restoration, and the emergence of drug-resistant escapemutants. Cell and gene therapies offer the promise of preventing progressiveHIV infectionby interfering with HIV replication in the absence of chronicantiviral therapy.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

3rd International Conference onSynthetic Biology, Munich, Germany, July 20-21, 2017; International Conference onIntegrative Medicine & Nutrition, Dubai, UAE, May11-13, 2017; International Conference on Animal and Human Cell Culture, Jackson Ville, USA, Sep 25-27, 2017; International Conference onCell Signalling and Cancer Therapy,Paris, France,Aug 20-22, 2017;7th Annual Conference on Stem Cell and Regenerative Medicine,Paris,France,Aug 04-05, 2016.

Track-9 Diabetes for gene therapy:

Cell therapyapproaches for this disease are focused on developing the most efficient methods for the isolation ofpancreasbeta cells or appropriatestem cells, appropriate location forcell transplant, and improvement of their survival upon infusion. Alternatively, gene andcell therapyscientists are developing methods to reprogram some of the other cells of the pancreas to secreteinsulin. Currently ongoingclinical trialsusing these gene andcell therapystrategies hold promise for improved treatments of type I diabetes in the future. The firstgene therapyapproach to diabetes was put forward shortly after the cloning of theinsulingene. It was proposed that non-insulin producing cells could be made into insulin-producingcells using a suitable promoter and insulin gene construct, and that these substitute cells could restore insulin production in type 1 and some type 2 diabetics.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

15thWorld Congress on Biotechnology and Biotech Industries Meet ,Rome, Italy,March 20-21, 2017;6th International Conference onTissue Engineering & Regenerative Medicine, Baltimore, USA, Aug 20-22, 2017; 8th World Congress and Expo onCell & Stem Cell Research, Orlando, USA, March 20-22, 2017; 14th Asia-Pacific Biotech Congress,Beijing, China,April 10-12, 2017;5th International Conference onIntegrative Biology, London, UK, June 19-21, 2017.

Track-10 Viral gene therapy:

Converting avirusinto a vector Theviral life cyclecan be divided into two temporally distinct phases: infection and replication. Forgene therapyto be successful, an appropriate amount of a therapeutic gene must be delivered into the target tissue without substantial toxicity. Eachviral vectorsystem is characterized by an inherent set of properties that affect its suitability for specific gene therapy applications. For some disorders, long-term expression from a relatively small proportion of cells would be sufficient (for example, genetic disorders), whereas otherpathologiesmight require high, but transient,gene expression. For example, gene therapies designed to interfere with a viral infectious process or inhibit the growth ofcancer cellsby reconstitution of inactivated tumour suppressor genes may require gene transfer into a large fraction of theabnormal cells.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

3rd International Conference onSynthetic Biology, Munich, Germany, July 20-21, 2017;5th International Conference and Exhibition onCell and Gene Therapy,Madrid, Spain,Mar 2-3, 2017; International Conference on Animal and Human Cell Culture, Jackson Ville, USA, Sep 25-27, 2017; 9th International Conference onCancer Genomics, Chicago, USA, May 29-31, 2017; 14th Asia-Pacific Biotech Congress,Beijing, China,April 10-12, 2017.

Track-11 Stem cell therapies:

Stem cells have tremendous promise to help us understand and treat a range of diseases, injuries and other health-related conditions. Their potential is evident in the use ofblood stem cellsto treat diseases of the blood, a therapy that has saved the lives of thousands of children withleukaemia; and can be seen in the use ofstem cellsfor tissue grafts to treat diseases or injury to the bone, skin and surface of the eye. Some bone, skin andcorneal(eye) injuries and diseases can be treated bygraftingor implanting tissues, and the healing process relies on stem cells within thisimplanted tissue.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

2nd World Congress on Human Genetics, Chicago, USA, July 24-26, 2017; 2nd International Conference onGenetic Counselling and Genomic Medicine ,Beijing, China,July 10-12, 2017; International Conference onClinical and Molecular Genetics, Las Vegas, USA, April 24-26, 2017; 2nd International Conference onMolecular Biology,London, UK,June 22-24, 2017; 15th Biotechnology Congress, Baltimore, USA, June 22-23, 2017.

Track-12 Stem cell preservation:

The ability to preserve the cells is critical to theirclinicalapplication. It improves patient access to therapies by increasing the genetic diversity of cells available. In addition, the ability to preserve cells improves the “manufacturability” of acell therapyproduct by permitting the cells to be stored until the patient is ready for administration of the therapy, permitting inventory control of products, and improving management of staffing atcell therapyfacilities. Finally, the ability to preservecell therapiesimproves the safety of cell therapy products by extending the shelf life of a product and permitting completion of safety and quality control testing before release of the product for use. preservation permits coordination between the manufacture of the therapy and patient care regimes.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

7th Annual Conference on Stem Cell and Regenerative Medicine,Paris, France,Aug 04-05, 2016; 2nd Biotechnology World Convention,LONDON, UK,May 25-27, 2017; International Conference on Animal and Human Cell Culture, Jackson Ville, USA, Sep 25-27, 2017; 9th International Conference onCancer Genomics, Chicago, USA, May 29-31, 2017; 3rd International Conference onSynthetic Biology, Munich, Germany, July 20-21, 2017.

Track-13 Stem cell products:

The globalstemcell,Stem cell productsmarket will grow from about $5.6 billion in 2013 to nearly $10.6 billion in 2018, registering a compound annual growth rate (CAGR) of 13.6% from 2013 through 2018.This trackdiscusses the implications ofstemcellresearchand commercial trends in the context of the current size and growth of thepharmaceutical market, both in global terms and analysed by the most important national markets.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

6th International Conference onTissue Engineering & Regenerative Medicine, Baltimore, USA, Aug 20-22, 2017; 8th World Congress and Expo onCell & Stem Cell Research, Orlando, USA, March 20-22, 2017; 15thWorld Congress on Biotechnology and Biotech Industries Meet,Rome, Italy,March 20-21, 2017; 2nd International Conference onGenetic Counselling and Genomic Medicine ,Beijing, China,July 10-12, 2017; International Conference onClinical and Molecular Genetics, las vegas, USA, April 24-26, 2017.

Track-14 Genetically inherited diseases:

Agenetic diseaseis any disease that is caused by an abnormality in an individual’sgenome, the person’s entiregeneticmakeup. The abnormality can range from minuscule to major — from a discrete mutation in a single base in the DNA of a single gene to a grosschromosome abnormalityinvolving the addition or subtraction of an entirechromosomeor set of chromosomes.Most genetic diseases are the direct result of a mutation in one gene. However, one of the most difficult problems ahead is to find out how genes contribute to diseases that have a complex pattern ofinheritance, such as in the cases of diabetes,asthma,cancerandmental illness. In all these cases, no one gene has the yes/no power to say whether a person has a disease or not. It is likely that more than one mutation is required before the disease is manifest, and a number of genes may each make a subtle contribution to a person’s susceptibility to a disease; genes may also affect how a person reacts toenvironmental factors.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

15th Biotechnology Congress, Baltimore, USA, June 22-23, 2017; 3rd International Conference onSynthetic Biology, Munich, Germany, July 20-21, 2017; 5th International Conference and Exhibition onCell and Gene Therapy,Madrid, Spain,Mar 2-3, 2017; International Conference onCell Signalling and Cancer Therapy,paris, France,Aug 20-22, 2017; International Conference on Animal and Human Cell Culture, Jackson Ville, USA, Sep 25-27, 2017.

Track-15 Plant stem cells:

Plantshave emerged as powerful production platforms for the expression of fully functional recombinantmammalian proteins. These expression systems have demonstrated the ability to produce complexglycoproteinsin a cost-efficient manner at large scale. The full realization of thetherapeuticpotential of stem cells has only recently come into the forefront ofregenerative medicine. Stem cells are unprogrammed cells that can differentiate into cells with specific functions.Regenerative therapiesare used to stimulate healing and might be used in the future to treat various kinds of diseases.Regenerative medicinewill result in an extended healthy life span. A fresh apple is a symbol for beautiful skin. Hair greying for example could be shown to result from the fact that themelanocyte stem cellsin the hair follicle have died off.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

9th International Conference onGenomics and Pharmacogenomics, Chicago, USA, July 13-14, 2017; 7th International Conference onPlant Genomics, Bangkok, Thailand, July 03-05, 2017; 15th Euro Biotechnology Congress, Valencia, Spain, June 05-07, 2017; 5th International Conference and Exhibition onCell and Gene Therapy,Madrid, Spain,Mar 2-3, 2017; 3rd International Conference & Exhibition onTissue Preservation and Bio banking,Baltimore, USA,June 29-30, 2017.

Track-16 Plant stem cell rejuvenation:

Asplantscannot escape from danger by running or taking flight, they need a special mechanism to withstandenvironmental stress. What empowers them to withstand harsh attacks and preserve life is the stem cell. According to Wikipedia, plantstem cellsnever undergo theagingprocess but constantly create new specialized and unspecialized cells, and they have the potential to grow into any organ, tissue, or cell in the body. The everlasting life is due to the hormones auxin andgibberellin. British scientists found that plant stem cells were much more sensitive toDNAdamage than other cells. And once they sense damage, they trigger death of these cells.

Rejuvenate with Plant Stem Cells

Detoxifyand release toxins on a cellular level. Nourishyour body with vital nutrients. Regenerateyour cells and diminish the effects of aging.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

International Conference on Animal and Human Cell Culture, Jackson Ville, USA, Sep 25-27, 2017; 14th Asia-Pacific Biotech Congress,Beijing, China,April 10-12, 2017; 15th Biotechnology Congress, Baltimore, USA, June 22-23, 2017; 3rd International Conference onSynthetic Biology, Munich, Germany,July 20-21, 2017; 5th International Conference and Exhibition on Cell and Gene Therapy,Madrid, Spain,Mar 2-3, 2017.

Track-17 Clinical trials in cell and gene therapy:

Aclinical trialis a research study that seeks to determine if a treatment is safe and effective. Advancing new cell andgene therapies(CGTs) from the laboratory into early-phaseclinical trialshas proven to be a complex task even for experienced investigators. Due to the wide variety ofCGTproducts and their potential applications, a case-by-case assessment is warranted for the design of each clinical trial.

Objectives:Determine thepharmacokineticsof this regimen by the persistence of modified T cells in the blood of these patients, Evaluate theimmunogenicityof murine sequences in chimeric anti-CEA Ig TCR, Assess immunologic parameters which correlate with the efficacy of this regimen in these patients, Evaluate, in a preliminary manner, the efficacy of this regimen in patients with CEA bearingtumours.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

2nd Biotechnology World Convention,London, UK,May 25-27, 2017; International Conference on Animal and Human Cell Culture, Jackson Ville, USA, Sep 25-27, 2017; 9th International Conference onCancer Genomics, Chicago, USA, May 29-31, 2017; 8th World Congress and Expo onCell & Stem Cell Research, Orlando, USA, March 20-22, 2017; 15thWorld Congress on Biotechnology and Biotech Industries Meet,Rome, Italy,March 20-21, 2017.

Track-18 Molecular epigenetics:

Epigeneticsis the study of heritable changes in thephenotypeof a cell or organism that are not caused by its genotype. The molecular basis of anepigeneticprofile arises from covalent modifications of protein andDNAcomponents ofchromatin. The epigenetic profile of a cell often dictates cell fate, as well as mammalian development,agingand disease. Epigenetics has evolved to become the science that explains how the differences in the patterns ofgene expressionin diverse cells or tissues are executed and inherited.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

5th International Conference onIntegrative Biology, London, UK, June 19-21, 2017; 2nd World Congress on Human Genetics, Chicago, USA, July 24-26, 2017; 9th International Conference onGenomics and Pharmacogenomics, Chicago, USA, July 13-14, 2017; International Conference onIntegrative Medicine & Nutrition, Dubai, UAE, May11-13, 2017; 14th Asia-Pacific Biotech Congress,Beijing, China,April 10-12, 2017.

Track-19 Bioengineering therapeutics:

The goals ofbioengineeringstrategies for targetedcancertherapies are (1) to deliver a high dose of an anticancer drug directly to a cancer tumour, (2) to enhance drug uptake by malignant cells, and (3) to minimize drug uptake by non-malignant cells. In ESRD micro electro mechanical systems andnanotechnologyto create components such as robust silicon Nano pore filters that mimic natural kidney structure for high-efficiency toxin clearance. It also usestissue engineeringto build a miniature bioreactor in which immune-isolated human-derived renal cells perform key functions, such as reabsorption of water and salts.In drug delivery for a leading cause ofblindness, photo-etching fabrication techniques from themicrochipindustry to create thin-film and planar micro devices (dimensions in millionths of meters) with protectivemedicationreservoirs andnanopores(measured in billionths of meters) for insertion in the back of the eye to deliver sustained doses of drug across protective retinalepithelial tissuesover the course of several months.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

6th International Conference onTissue Engineering & Regenerative Medicine, Baltimore, USA, Aug 20-22, 2017; 8th World Congress and Expo onCell & Stem Cell Research, Orlando, USA, March 20-22, 2017; 15thWorld Congress on Biotechnology and Biotech Industries Meet,Rome, Italy,March 20-21, 2017; 2nd International Conference onGenetic Counselling and Genomic Medicine ,Beijing, China,July 10-12, 2017; International Conference onClinical and Molecular Genetics, Las Vegas, USA, April 24-26, 2017.

Track-20 Advanced gene therapy:

Advanced therapiesare different fromconventional medicines, which are made from chemicals or proteins.Gene-therapymedicines:these contain genes that lead to atherapeuticeffect. They work by inserting ‘recombinant’ genes into cells, usually to treat a variety of diseases, including genetic disorders, cancer or long-term diseases.Somatic-cell therapymedicines:these contain cells or tissues that have been manipulated to change their biological characteristics.Advanced Cell &Gene Therapyprovides guidanceinprocess development, GMP/GTP manufacturing,regulatory affairs, due diligence and strategy, specializing in cell therapy,gene therapy, and tissue-engineeredregenerative medicineproducts.

RelatedCell Therapy Conferences | Cell Therapy |Gene Therapy Conferences | Conference Series LLC

9th International Conference onGenomics and Pharmacogenomics, Chicago, USA, July 13-14, 2017; 7th International Conference onPlant Genomics, Bangkong,Thailand, July 03-05, 2017; International Conference onIntegrative Medicine & Nutrition, Dubai, UAE, May11-13, 2017; 14th Asia-Pacific Biotech Congress, Beijing,China,April 10-12, 2017; 2nd World Congress on Human Genetics, Chicago, USA, July 24-26, 2017.

The rest is here:
Cell Therapy Conferences | Spain | Worldwide Events …

Read the Rest...

Nanomedicine – Wikipedia

§ October 21st, 2016 § Filed under Nano Medicine § Tagged Comments Off on Nanomedicine – Wikipedia

Nanomedicine is the medical application of nanotechnology.[1] Nanomedicine ranges from the medical applications of nanomaterials and biological devices, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology such as biological machines. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials (materials whose structure is on the scale of nanometers, i.e. billionths of a meter).

Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles.

Nanomedicine seeks to deliver a valuable set of research tools and clinically useful devices in the near future.[2][3] The National Nanotechnology Initiative expects new commercial applications in the pharmaceutical industry that may include advanced drug delivery systems, new therapies, and in vivo imaging.[4] Nanomedicine research is receiving funding from the US National Institutes of Health, including the funding in 2005 of a five-year plan to set up four nanomedicine centers.

Nanomedicine sales reached $16 billion in 2015, with a minimum of $3.8 billion in nanotechnology R&D being invested every year. Global funding for emerging nanotechnology increased by 45% per year in recent years, with product sales exceeding $1 trillion in 2013.[5] As the nanomedicine industry continues to grow, it is expected to have a significant impact on the economy.

Nanotechnology has provided the possibility of delivering drugs to specific cells using nanoparticles.

The overall drug consumption and side-effects may be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. Targeted drug delivery is intended to reduce the side effects of drugs with concomitant decreases in consumption and treatment expenses. Drug delivery focuses on maximizing bioavailability both at specific places in the body and over a period of time. This can potentially be achieved by molecular targeting by nanoengineered devices.[6][7] More than $65 billion are wasted each year due to poor bioavailability.[citation needed] A benefit of using nanoscale for medical technologies is that smaller devices are less invasive and can possibly be implanted inside the body, plus biochemical reaction times are much shorter. These devices are faster and more sensitive than typical drug delivery.[8] The efficacy of drug delivery through nanomedicine is largely based upon: a) efficient encapsulation of the drugs, b) successful delivery of drug to the targeted region of the body, and c) successful release of the drug.[citation needed]

Drug delivery systems, lipid- [9] or polymer-based nanoparticles,[10] can be designed to improve the pharmacokinetics and biodistribution of the drug.[11][12][13] However, the pharmacokinetics and pharmacodynamics of nanomedicine is highly variable among different patients.[14] When designed to avoid the body’s defence mechanisms,[15] nanoparticles have beneficial properties that can be used to improve drug delivery. Complex drug delivery mechanisms are being developed, including the ability to get drugs through cell membranes and into cell cytoplasm. Triggered response is one way for drug molecules to be used more efficiently. Drugs are placed in the body and only activate on encountering a particular signal. For example, a drug with poor solubility will be replaced by a drug delivery system where both hydrophilic and hydrophobic environments exist, improving the solubility.[16] Drug delivery systems may also be able to prevent tissue damage through regulated drug release; reduce drug clearance rates; or lower the volume of distribution and reduce the effect on non-target tissue. However, the biodistribution of these nanoparticles is still imperfect due to the complex host’s reactions to nano- and microsized materials[15] and the difficulty in targeting specific organs in the body. Nevertheless, a lot of work is still ongoing to optimize and better understand the potential and limitations of nanoparticulate systems. While advancement of research proves that targeting and distribution can be augmented by nanoparticles, the dangers of nanotoxicity become an important next step in further understanding of their medical uses.[17]

Nanoparticles can be used in combination therapy for decreasing antibiotic resistance or for their antimicrobial properties.[18][19][20] Nanoparticles might also used to circumvent multidrug resistance (MDR) mechanisms.[21]

Two forms of nanomedicine that have already been tested in mice and are awaiting human trials that will be using gold nanoshells to help diagnose and treat cancer,[22] and using liposomes as vaccine adjuvants and as vehicles for drug transport.[23][24] Similarly, drug detoxification is also another application for nanomedicine which has shown promising results in rats.[25] Advances in Lipid nanotechnology was also instrumental in engineering medical nanodevices and novel drug delivery systems as well as in developing sensing applications.[26] Another example can be found in dendrimers and nanoporous materials. Another example is to use block co-polymers, which form micelles for drug encapsulation.[10]

Polymeric nano-particles are a competing technology to lipidic (based mainly on Phospholipids) nano-particles. There is an additional risk of toxicity associated with polymers not widely studied or understood. The major advantages of polymers is stability, lower cost and predictable characterisation. However, in the patient’s body this very stability (slow degradation) is a negative factor. Phospholipids on the other hand are membrane lipids (already present in the body and surrounding each cell), have a GRAS (Generally Recognised As Safe) status from FDA and are derived from natural sources without any complex chemistry involved. They are not metabolised but rather absorbed by the body and the degradation products are themselves nutrients (fats or micronutrients).[citation needed]

Protein and peptides exert multiple biological actions in the human body and they have been identified as showing great promise for treatment of various diseases and disorders. These macromolecules are called biopharmaceuticals. Targeted and/or controlled delivery of these biopharmaceuticals using nanomaterials like nanoparticles and Dendrimers is an emerging field called nanobiopharmaceutics, and these products are called nanobiopharmaceuticals.[citation needed]

Another highly efficient system for microRNA delivery for example are nanoparticles formed by the self-assembly of two different microRNAs deregulated in cancer.[27]

Another vision is based on small electromechanical systems; nanoelectromechanical systems are being investigated for the active release of drugs. Some potentially important applications include cancer treatment with iron nanoparticles or gold shells.Nanotechnology is also opening up new opportunities in implantable delivery systems, which are often preferable to the use of injectable drugs, because the latter frequently display first-order kinetics (the blood concentration goes up rapidly, but drops exponentially over time). This rapid rise may cause difficulties with toxicity, and drug efficacy can diminish as the drug concentration falls below the targeted range.[citation needed]

Some nanotechnology-based drugs that are commercially available or in human clinical trials include:

Existing and potential drug nanocarriers have been reviewed.[38][39][40][41]

Nanoparticles have high surface area to volume ratio. This allows for many functional groups to be attached to a nanoparticle, which can seek out and bind to certain tumor cells. Additionally, the small size of nanoparticles (10 to 100 nanometers), allows them to preferentially accumulate at tumor sites (because tumors lack an effective lymphatic drainage system).[42] Limitations to conventional cancer chemotherapy include drug resistance, lack of selectivity, and lack of solubility. Nanoparticles have the potential to overcome these problems.[43]

In photodynamic therapy, a particle is placed within the body and is illuminated with light from the outside. The light gets absorbed by the particle and if the particle is metal, energy from the light will heat the particle and surrounding tissue. Light may also be used to produce high energy oxygen molecules which will chemically react with and destroy most organic molecules that are next to them (like tumors). This therapy is appealing for many reasons. It does not leave a “toxic trail” of reactive molecules throughout the body (chemotherapy) because it is directed where only the light is shined and the particles exist. Photodynamic therapy has potential for a noninvasive procedure for dealing with diseases, growth and tumors. Kanzius RF therapy is one example of such therapy (nanoparticle hyperthermia) .[citation needed] Also, gold nanoparticles have the potential to join numerous therapeutic functions into a single platform, by targeting specific tumor cells, tissues and organs.[44][45]

In vivo imaging is another area where tools and devices are being developed. Using nanoparticle contrast agents, images such as ultrasound and MRI have a favorable distribution and improved contrast. This might be accomplished by self assembled biocompatible nanodevices that will detect, evaluate, treat and report to the clinical doctor automatically.[citation needed]

The small size of nanoparticles endows them with properties that can be very useful in oncology, particularly in imaging. Quantum dots (nanoparticles with quantum confinement properties, such as size-tunable light emission), when used in conjunction with MRI (magnetic resonance imaging), can produce exceptional images of tumor sites. Nanoparticles of cadmium selenide (quantum dots) glow when exposed to ultraviolet light. When injected, they seep into cancer tumors. The surgeon can see the glowing tumor, and use it as a guide for more accurate tumor removal.These nanoparticles are much brighter than organic dyes and only need one light source for excitation. This means that the use of fluorescent quantum dots could produce a higher contrast image and at a lower cost than today’s organic dyes used as contrast media. The downside, however, is that quantum dots are usually made of quite toxic elements.[citation needed]

Tracking movement can help determine how well drugs are being distributed or how substances are metabolized. It is difficult to track a small group of cells throughout the body, so scientists used to dye the cells. These dyes needed to be excited by light of a certain wavelength in order for them to light up. While different color dyes absorb different frequencies of light, there was a need for as many light sources as cells. A way around this problem is with luminescent tags. These tags are quantum dots attached to proteins that penetrate cell membranes. The dots can be random in size, can be made of bio-inert material, and they demonstrate the nanoscale property that color is size-dependent. As a result, sizes are selected so that the frequency of light used to make a group of quantum dots fluoresce is an even multiple of the frequency required to make another group incandesce. Then both groups can be lit with a single light source. They have also found a way to insert nanoparticles[46] into the affected parts of the body so that those parts of the body will glow showing the tumor growth or shrinkage or also organ trouble.[47]

Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology. Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Gold nanoparticles tagged with short segments of DNA can be used for detection of genetic sequence in a sample. Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots into polymeric microbeads. Nanopore technology for analysis of nucleic acids converts strings of nucleotides directly into electronic signatures.[citation needed]

Sensor test chips containing thousands of nanowires, able to detect proteins and other biomarkers left behind by cancer cells, could enable the detection and diagnosis of cancer in the early stages from a few drops of a patient’s blood.[48]Nanotechnology is helping to advance the use of arthroscopes, which are pencil-sized devices that are used in surgeries with lights and cameras so surgeons can do the surgeries with smaller incisions. The smaller the incisions the faster the healing time which is better for the patients. It is also helping to find a way to make an arthroscope smaller than a strand of hair.[49]

Research on nanoelectronics-based cancer diagnostics could lead to tests that can be done in pharmacies. The results promise to be highly accurate and the product promises to be inexpensive. They could take a very small amount of blood and detect cancer anywhere in the body in about five minutes, with a sensitivity that is a thousand times better than in a conventional laboratory test. These devices that are built with nanowires to detect cancer proteins; each nanowire detector is primed to be sensitive to a different cancer marker. The biggest advantage of the nanowire detectors is that they could test for anywhere from ten to one hundred similar medical conditions without adding cost to the testing device.[50] Nanotechnology has also helped to personalize oncology for the detection, diagnosis, and treatment of cancer. It is now able to be tailored to each individuals tumor for better performance. They have found ways that they will be able to target a specific part of the body that is being affected by cancer.[51]

Magnetic micro particles are proven research instruments for the separation of cells and proteins from complex media. The technology is available under the name Magnetic-activated cell sorting or Dynabeads among others. More recently it was shown in animal models that magnetic nanoparticles can be used for the removal of various noxious compounds including toxins, pathogens, and proteins from whole blood in an extracorporeal circuit similar to dialysis.[52][53] In contrast to dialysis, which works on the principle of the size related diffusion of solutes and ultrafiltration of fluid across a semi-permeable membrane, the purification with nanoparticles allows specific targeting of substances. Additionally larger compounds which are commonly not dialyzable can be removed.[citation needed]

The purification process is based on functionalized iron oxide or carbon coated metal nanoparticles with ferromagnetic or superparamagnetic properties.[54] Binding agents such as proteins,[53]antibodies,[52]antibiotics,[55] or synthetic ligands[56] are covalently linked to the particle surface. These binding agents are able to interact with target species forming an agglomerate. Applying an external magnetic field gradient allows exerting a force on the nanoparticles. Hence the particles can be separated from the bulk fluid, thereby cleaning it from the contaminants.[57][58]

The small size (

This approach offers new therapeutic possibilities for the treatment of systemic infections such as sepsis by directly removing the pathogen. It can also be used to selectively remove cytokines or endotoxins[55] or for the dialysis of compounds which are not accessible by traditional dialysis methods. However the technology is still in a preclinical phase and first clinical trials are not expected before 2017.[60]

Nanotechnology may be used as part of tissue engineering to help reproduce or repair or reshape damaged tissue using suitable nanomaterial-based scaffolds and growth factors. Tissue engineering if successful may replace conventional treatments like organ transplants or artificial implants. Nanoparticles such as graphene, carbon nanotubes, molybdenum disulfide and tungsten disulfide are being used as reinforcing agents to fabricate mechanically strong biodegradable polymeric nanocomposites for bone tissue engineering applications. The addition of these nanoparticles in the polymer matrix at low concentrations (~0.2 weight%) leads to significant improvements in the compressive and flexural mechanical properties of polymeric nanocomposites.[61][62] Potentially, these nanocomposites may be used as a novel, mechanically strong, light weight composite as bone implants.[citation needed]

For example, a flesh welder was demonstrated to fuse two pieces of chicken meat into a single piece using a suspension of gold-coated nanoshells activated by an infrared laser. This could be used to weld arteries during surgery.[63] Another example is nanonephrology, the use of nanomedicine on the kidney.

Neuro-electronic interfacing is a visionary goal dealing with the construction of nanodevices that will permit computers to be joined and linked to the nervous system. This idea requires the building of a molecular structure that will permit control and detection of nerve impulses by an external computer. A refuelable strategy implies energy is refilled continuously or periodically with external sonic, chemical, tethered, magnetic, or biological electrical sources, while a nonrefuelable strategy implies that all power is drawn from internal energy storage which would stop when all energy is drained. A nanoscale enzymatic biofuel cell for self-powered nanodevices have been developed that uses glucose from biofluids including human blood and watermelons.[64] One limitation to this innovation is the fact that electrical interference or leakage or overheating from power consumption is possible. The wiring of the structure is extremely difficult because they must be positioned precisely in the nervous system. The structures that will provide the interface must also be compatible with the body’s immune system.[65]

Molecular nanotechnology is a speculative subfield of nanotechnology regarding the possibility of engineering molecular assemblers, machines which could re-order matter at a molecular or atomic scale. Nanomedicine would make use of these nanorobots, introduced into the body, to repair or detect damages and infections. Molecular nanotechnology is highly theoretical, seeking to anticipate what inventions nanotechnology might yield and to propose an agenda for future inquiry. The proposed elements of molecular nanotechnology, such as molecular assemblers and nanorobots are far beyond current capabilities.[1][65][66][67] Future advances in nanomedicine could give rise to life extension through the repair of many processes thought to be responsible for aging. K. Eric Drexler, one of the founders of nanotechnology, postulated cell repair machines, including ones operating within cells and utilizing as yet hypothetical molecular machines, in his 1986 book Engines of Creation, with the first technical discussion of medical nanorobots by Robert Freitas appearing in 1999.[1]Raymond Kurzweil, a futurist and transhumanist, stated in his book The Singularity Is Near that he believes that advanced medical nanorobotics could completely remedy the effects of aging by 2030.[68] According to Richard Feynman, it was his former graduate student and collaborator Albert Hibbs who originally suggested to him (circa 1959) the idea of a medical use for Feynman’s theoretical micromachines (see nanotechnology). Hibbs suggested that certain repair machines might one day be reduced in size to the point that it would, in theory, be possible to (as Feynman put it) “swallow the doctor”. The idea was incorporated into Feynman’s 1959 essay There’s Plenty of Room at the Bottom.[69]

See the rest here:
Nanomedicine – Wikipedia

Read the Rest...

Nanomedicine Fact Sheet – National Human Genome Research …

§ September 24th, 2016 § Filed under Nano Medicine Comments Off on Nanomedicine Fact Sheet – National Human Genome Research …

Nanomedicine Overview

What if doctors had tiny tools that could search out and destroy the very first cancer cells of a tumor developing in the body? What if a cell’s broken part could be removed and replaced with a functioning miniature biological machine? Or what if molecule-sized pumps could be implanted in sick people to deliver life-saving medicines precisely where they are needed? These scenarios may sound unbelievable, but they are the ultimate goals of nanomedicine, a cutting-edge area of biomedical research that seeks to use nanotechnology tools to improve human health.

Top of page

A lot of things are small in today’s high-tech world of biomedical tools and therapies. But when it comes to nanomedicine, researchers are talking very, very small. A nanometer is one-billionth of a meter, too small even to be seen with a conventional lab microscope.

Top of page

Nanotechnology is the broad scientific field that encompasses nanomedicine. It involves the creation and use of materials and devices at the level of molecules and atoms, which are the parts of matter that combine to make molecules. Non-medical applications of nanotechnology now under development include tiny semiconductor chips made out of strings of single molecules and miniature computers made out of DNA, the material of our genes. Federally supported research in this area, conducted under the rubric of the National Nanotechnology Initiative, is ongoing with coordinated support from several agencies.

Top of page

For hundreds of years, microscopes have offered scientists a window inside cells. Researchers have used ever more powerful visualization tools to extensively categorize the parts and sub-parts of cells in vivid detail. Yet, what scientists have not been able to do is to exhaustively inventory cells, cell parts, and molecules within cell parts to answer questions such as, “How many?” “How big?” and “How fast?” Obtaining thorough, reliable measures of quantity is the vital first step of nanomedicine.

As part of the National Institutes of Health (NIH) Common Fund [nihroadmap.nih.gov], the NIH [nih.gov] has established a handful of nanomedicine centers. These centers are staffed by a highly interdisciplinary scientific crew, including biologists, physicians, mathematicians, engineers and computer scientists. Research conducted over the first few years was spent gathering extensive information about how molecular machines are built.

Once researchers had catalogued the interactions between and within molecules, they turned toward using that information to manipulate those molecular machines to treat specific diseases. For example, one center is trying to return at least limited vision to people who have lost their sight. Others are trying to develop treatments for severe neurological disorders, cancer, and a serious blood disorder.

The availability of innovative, body-friendly nanotools that depend on precise knowledge of how the body’s molecular machines work, will help scientists figure out how to build synthetic biological and biochemical devices that can help the cells in our bodies work the way they were meant to, returning the body to a healthier state.

Top of page

Last Updated: January 22, 2014

Here is the original post:
Nanomedicine Fact Sheet – National Human Genome Research …

Read the Rest...

Nano Medicine – Treatments for Antibiotic Resistant Bacteria

§ May 16th, 2016 § Filed under Nano Medicine Comments Off on Nano Medicine – Treatments for Antibiotic Resistant Bacteria

Antibiotic resistance is now a bigger crisis than the AIDS epidemic of the 1980s, a landmark report recently warned. The spread of deadly superbugs that evade even the most powerful antibiotics is happening across the world, United Nations officials have confirmed. The effects will be devastating meaning a simple scratch or urinary tract infection could kill.

Tuberculosis (TB) is a scourge that is threatening to get ugly because TB is usually cured by taking antibiotics for six to nine months. However, if that treatment is interrupted or the dose is cut down, the stubborn bacteria battle back and mutate into a tougher strain that can no longer be killed by drugs. Such strains are scaring the heck out of the medical community for good reason. Tuberculosis is highly contagious, holding the potential to wipe out wide swaths of humanity in the case of an epidemic of these drug resistant strains.

Australias first victim of a killer strain of drug-resistant tuberculosis died amid warnings of a looming health epidemic on Queenslands doorstep. Medical experts are seriously concerned about the handling of the TB epidemic in Papua New Guinea after Catherina Abraham died of an incurable form of the illness, known as XDR-TB (extensively drug resistant TB) in Cairns Base Hospital. Of course we always get big scares from the mainstream medical press, who are big cheerleaders of big pharmaceutical companies as our governmental medical officials.

Now medical experts are warning that drug resistant tuberculosis is such a problem in the Asia Pacific region that it could overwhelm health systems.

A drug-resistant TB case did touch off a scare in U.S. We dont know too much about a Nepalese man whos in medical isolation in Texas while being treated for extensively drug-resistant tuberculosis, or XDR-TB, the most difficult-to-treat kind.

XDR-TB is resistant not only to isoniazid and rifampin but also a class of drugs called fluoroquinolones and one or more potent injectable antibiotics. This is one of the nastiest of all antibiotics, which easily destroys peoples lives by itself.

TB germs become drug-resistant when patients fail to complete a course of treatment. When a partly-resistant strain is treated with the wrong drugs, it can become extensively resistant. There are about 60,000 people with XDR-TB strains like the Nepalese man whos in isolation. That means there are other people with XDR-TB traveling the world at any given time.

China and India Will Spread TB around the World

China and India combined account for more than half of the global MDR-TB burden.[1]

If you are not scared yet into taking defensive measures then look at what is happening in China where Internet cafes are becoming a major place for the spread of tuberculosis among minors due to poor ventilation and their decreased immunity after playing computer games all night.

Among infectious diseases, tuberculosis is the citys top killer, the Shanghai Health Bureau said. A total of 139 people were killed by serious infectious diseases in Shanghai in 2011, and 44 of them died from TB. Shanghai registered 3,760 residents with tuberculosis, including 1,988 infective cases in 2010.

Learn how to treat yourself and your loved ones safely at home with Dr Sircus Protocol

Nearly half of Chinas population carries the bacterium that causes tuberculosis and 5 million people there develop the disease every year, according to a 2011 study from the Chinese Ministry of Health. The study, reported in state-run media on World Tuberculosis Day, revealed some staggering statistics: an estimated 500 million Chinese citizens (45 percent of the population) are TB carriers, creating a TB epidemic second only to that of India and accounting for 14 percent of the worlds TB carriers.

Antibiotic Created Hell

Every single prescription antibiotic from the drug companies carries significant risks. To exemplify, just some of the direct risks to the consumer include:

Another marked risk to the consumer is being prescribed an antibiotic that conveys no benefit whatsoever (not including rare cases where prophylaxis can be justified). This includes:

Even popular antibiotics such as Zithromax come with warnings of potentially fatal heart arrhythmias, especially in magnesium and potassium deficient people.[2] The FDA has stated that patients at risk for arrhythmia include those who already have a prolonged QT interval, low blood levels of potassium or magnesium, and an abnormally slow heart rate, or who take drugs to treat arrhythmias. Antibiotics have also been linked with sudden cardiac death.

The risk of acute kidney disease is doubled for people taking oral fluoroquinolone antibiotics, according to a study of published in CMAJ (Canadian Medical Association Journal). Fluoroquinolones, including ciprofloxacin, levofloxacin and moxifloxacin, are common broad-spectrum antibiotics most often used to treat respiratory and urogenital infections. Case reports have indicated acute kidney injury with use, and prescription labels carry a warning of kidney failure. However, when oral fluoroquinolones are prescribed in clinical practice, kidney injury is usually not considered. [3]

Lost War on TB

What do cancer cells, weeds, and pathogens have in common? They all evolve resistance to the treatments that are supposed to eliminate them.

It is obvious that it is a lost war on TB. Antibiotics are not appropriate drugs for TB or any other antibiotic resistant bacteria and certainly they are absolutely a hopeless waste of time and money when dealing with fungal infections, which TB often is or is complicated with.

Doctors will not get it because their medical boards could care less what happens to the public as long as they make their money and maintain their power. The federal Centers for Disease Control estimates that antibiotic drug resistance costs $20 billion a year in healthcare costs a year and leads to 8 million additional days spent in hospitals.

In my essay Drug-Resistant Tuberculosis, Fungus or Bacterial I wondered why they have not tried nebulized sodium bicarbonate, which, when combined with glutathione, offers one of the finest, safest and least expensive ways of treating the lungs.

We already know, for instance, that sodium bicarbonate can improve outcome in children with life-threatening asthma, and though it might not deliver the knockout blow to drug resistant bacteria it will certainly pull the rug out from under them by weakening them, because it will instantly change the terrain into something unfriendly. Bacteria that are thriving in an acid condition will flounder when faced with alkaline shocks.

An image of Mycobacterium tuberculosis bacteria captured with an electron microscope.

Iodine

Iodine, that allopathic nutritional mineral that medicine used for almost 200 years, also when nebulized, offers anti-pathogen firepower without equal because it has the ability to take down viruses, bacteria and stubborn fungi all in one stroke. Though it kills 90 percent of bacteria on the skin within 90 seconds, the use of iodine as an antibiotic has been ignored.

Iodine exhibits activity against bacteria, molds, yeasts, protozoa, and many viruses. Indeed, of all antiseptic preparations suitable for direct use on human and animal tissues, only iodine is capable of killing all classes of pathogens: gram-positive and gram-negative bacteria, mycobacteria, yeasts, and protozoa. Most bacteria are killed within 15 to 30 seconds of contact.

Iodine is by far the best antibiotic, antiviral and antiseptic of all time. Dr. David Derry

Bacterial Annihilation

The above image is from researchers, who tested on live mice, a double-loaded particle, called a nanogel, which significantly delayed tumor growth and increased survival, the researchers report. They administered the nanogels intravenously and, in separate experiments, directly into the tumors.

In 2011, IBM researchers and a research group in Singapore showed off a new kind of synthetic, biodegradable nanoparticle that doctors could use to attack bacterial cells that are resistant to antibiotics. They are telling the world that Nano medicine can and will save millions of lives as antibiotic resistant bacteria gain further foothold.

Nano soap identifies bacterial cells and destroys their membrane walls. IBM has confirmed that this type of medicine can completely eradicate drug-resistant bacteria on contact. One can find this type of soap being used in the agricultural area.

According to IBM researchers their nanoparticles can be injected into a colony of bacteria in the body and wipe it out. IBM researchers are saying that they could put some of their nano-gel on a tracheal tube (which is inserted down someones throat) or a catheter. That would vastly reduce the risk of infection related to the use of those medical devices. They are also saying that nano soap type particles would reduce health hazards for hospital workers, visitors, and patients. It could reduce the risks of methicillin-resistant Staphylococcus aureus, known as MRSA, or staph. In 2005, staph was associated with 95,000 serious infections and 19,000 hospital-stay-related deaths in the U.S.

The nano particles are physically attracted to infected cells like a magnet, breaking their membrane walls without destroying healthy cells around them. These agents prevent the bacteria from developing drug resistance by breaking through the cell wall and membrane, a fundamentally different mode of attack compared to antibiotics. With the creation of the hydrogel, the nanomedicine could be put into antibacterial soap, deodorant, hand sanitizer, or lotion. It could help heal wounds, tuberculosis, and lung infections, James Hedrick, an advanced organic materials scientist at IBM said. The nanomedicine could also target smaller problems such as toenail infections.

The human bodys immune systems protect us from harmful substances. But the body often rejects conventional antibiotics. But the new materials can work because they change themselves once they come into contact with water in the body or on its surface. The material self-assembles into a new polymer structure that is electrostatically attracted to the bacteria membranes (its like putting oil and water together). The polymers then break through the cell membranes, destroying the cell. The bacteria, which have amazing adaptive capabilities, cant adapt to this kind of physical attack, reports Hedrick.

It works because cells have a natural electric charge. The polymers are drawn only to infected areas. Other antimicrobial materials arent biodegradable, but these new materials are made of simple organic molecules. That means they can naturally exit the body, in contrast to other medicines that gather in the body and cause side effects. That means it isnt likely to cause skin irritation or other problems, continues Hedrick.

The hydrogel has another interesting property. It can attack whole colonies of bacteria, particularly if it is injected directly into the region of an infection. These bacteria collections, known as biofilms, can be like the coatings of film on your teeth, germs on touchscreens, or growths on medical devices. The hydrogel penetrates the film and disrupts it. We can kill 100 percent of the bacteria and reduce the likelihood of a recurrence, Hedrick said.

Women someday could protect themselves against sexually transmitted infections by using a gel that uses nanoparticles to deliver drugs to the vaginal walls, a new study in mice suggests. Other researchers arent sure exactly how their nano liquid works, but “we have found a way to stop bleeding in less than 15 seconds that could revolutionize bleeding control,” Rutledge Ellis-Behnke, a research scientist in MITs department of brain and cognitive sciences, said in a release.

Jerry Carlson at age 75 came down with Pertussis or Whopping Cough and he inhaled/nebulized the Nano Gel I was experimenting with finding quick relief:

For five weeks Ive struggled with Bordetella pertussis or whooping cough. There was no immunization for it when I was a kid. It really should be called “choking cough” rather than whooping cough. A coughing spasm locks the throat for 10 to 50 seconds several times a day (and night). The victim cant breathe. As the constriction relaxes slightly, a long gasp or series of rasping gasps creates the “whoop” which gave this malady its name. I havent had even a cold for years, so I wasnt expecting something like this to literally take me to my knees.

I began nebulizing a 1:512 dilution of Nano Gel placing the vapor stream so it would curl over my recliner and allow me to inhale the mist constantly for an hour. Always, this loosened the mucous and left a clear breathing passage. The nose and bronchi actually felt clean. I did the “treatment” two or three times a day, usually during the night. I have no idea whether it also reduced the pertussis bacterium, but my “bout” with the cough is receding and Im able to function pretty normally.

The Nano Gel inhaled this way does its thing in the respiratory system as a cleanser, diluting sticky mucosa, and does not irritate sensitive lung or bronchial tissue. My reasoning was that if it can be safely applied on a wound, it shouldnt hurt a lung, which is subjected to all kinds of dust and fumes anyway. I wonder what it might do for other lung bacterial diseases such as pneumonia. Or even lung-related TB.

Dr. Robert Beam has also used this Nano Gel using it to treat second and third degree burns and has said he has seen in vitro tests on staph, pseudomonas, fungus and viruses to great effect. He was very impressed and recommends it be tried on a host of skin conditions including flesh eating staph infections. Also he recommends it for ache, chemical burns, poison Ivy, psoriasis, Herpes Zoster, tick bites etc.

The Nano Gel that I used got around the problem of many drugs today that kill off good cells at the same time that they eradicate bad cells. Nano Gel, made solely with FDA approved food additives, is organic and contains none of the synthetic polymers but it will, in the same light, seek out bacteria and fungi cells and destroy their membrane walls.

Built from organic biodegradable molecules Nano Gel could prevent bacteria from developing drug resistance by breaking through their cell walls and membranes. This is a fundamentally different mode of attack when compared to antibiotics, which are against all life, as their name suggests. Antibiotics are anti-life whereas Nano Gel will break the back of fungi and bacteria without destroying the healthy cells around them.

I am not going to make any recommendations for dosage or use except to say that the agricultural grade Nano Gel I have used is diluted from 200 to 500 ounces water to 1 ounce of Nano Gel so a few ounces goes a long way. One could call it Nano Soap as well for it does more than clean the smile off of bacteria face walls. One could clean a battleship with a gallon of the stuff!

[2] The popular antibiotic azithromycin (Zithromax and Zmax, Pfizer) poses the risk for a potentially fatal irregular heart rhythm, which therefore warrants careful screening of patients for this drug, the US Food and Drug Administration (FDA) announced today (March 12, 2013). http://www.medscape.com/viewarticle/780660

[3] Canadian Medical Association Journal. “Risk of kidney disease doubled with use of fluoroquinolone antibiotics.” ScienceDaily. ScienceDaily, 3 June 2013.

Read the original:
Nano Medicine – Treatments for Antibiotic Resistant Bacteria

Read the Rest...

Nanomedicine Fact Sheet – Genome.gov | National Human …

§ May 11th, 2016 § Filed under Nano Medicine Comments Off on Nanomedicine Fact Sheet – Genome.gov | National Human …

Nanomedicine Overview

What if doctors had tiny tools that could search out and destroy the very first cancer cells of a tumor developing in the body? What if a cell’s broken part could be removed and replaced with a functioning miniature biological machine? Or what if molecule-sized pumps could be implanted in sick people to deliver life-saving medicines precisely where they are needed? These scenarios may sound unbelievable, but they are the ultimate goals of nanomedicine, a cutting-edge area of biomedical research that seeks to use nanotechnology tools to improve human health.

Top of page

A lot of things are small in today’s high-tech world of biomedical tools and therapies. But when it comes to nanomedicine, researchers are talking very, very small. A nanometer is one-billionth of a meter, too small even to be seen with a conventional lab microscope.

Top of page

Nanotechnology is the broad scientific field that encompasses nanomedicine. It involves the creation and use of materials and devices at the level of molecules and atoms, which are the parts of matter that combine to make molecules. Non-medical applications of nanotechnology now under development include tiny semiconductor chips made out of strings of single molecules and miniature computers made out of DNA, the material of our genes. Federally supported research in this area, conducted under the rubric of the National Nanotechnology Initiative, is ongoing with coordinated support from several agencies.

Top of page

For hundreds of years, microscopes have offered scientists a window inside cells. Researchers have used ever more powerful visualization tools to extensively categorize the parts and sub-parts of cells in vivid detail. Yet, what scientists have not been able to do is to exhaustively inventory cells, cell parts, and molecules within cell parts to answer questions such as, “How many?” “How big?” and “How fast?” Obtaining thorough, reliable measures of quantity is the vital first step of nanomedicine.

As part of the National Institutes of Health (NIH) Common Fund [nihroadmap.nih.gov], the NIH [nih.gov] has established a handful of nanomedicine centers. These centers are staffed by a highly interdisciplinary scientific crew, including biologists, physicians, mathematicians, engineers and computer scientists. Research conducted over the first few years was spent gathering extensive information about how molecular machines are built.

Once researchers had catalogued the interactions between and within molecules, they turned toward using that information to manipulate those molecular machines to treat specific diseases. For example, one center is trying to return at least limited vision to people who have lost their sight. Others are trying to develop treatments for severe neurological disorders, cancer, and a serious blood disorder.

The availability of innovative, body-friendly nanotools that depend on precise knowledge of how the body’s molecular machines work, will help scientists figure out how to build synthetic biological and biochemical devices that can help the cells in our bodies work the way they were meant to, returning the body to a healthier state.

Top of page

Last Updated: January 22, 2014

More here:
Nanomedicine Fact Sheet – Genome.gov | National Human …

Read the Rest...

Nanomedicine in Cancer ETP Nanomedicine

§ May 9th, 2016 § Filed under Nano Medicine Comments Off on Nanomedicine in Cancer ETP Nanomedicine

Cancer is one of the main causes of mortality worldwide and accounted for 7.6 million deaths (around 13 % of all deaths) in 2008. In the Western World and in the US, cancer represents the second leading cause of death after heart-attack. Emerging countries are facing more and more the increase of cancer incidence which represents 60% of the death in those countries.

According to the World Health Organization (WHO), there will be 15 million new cases of cancer worldwide in 2020. More than 90% of cancer-related deaths occur by the spread of malignant cells to vital organs, a process called metastasis. Academia, Pharmaceutical and biotechnology companies are making substantial research investments in order to develop specific treatments that can destroy primary and secondary tumors, i.e. those resulting from metastasis to other organs.

Nanotechnology in cancer treatments is already a reality providing a wide range of new tools and possibilities, from earlier diagnostics and improved imaging to better, more efficient, and more targeted therapies.

Cancer biomarkers are indicators produced by tumor cells spreading in the body and are commonly used in cancer detection. However they are present in too low concentrations to be efficiently detected in early phases. However the targeted delivery of specific nanoparticles into the tumor can induce a local interaction with cancer cells and forces them to significantly increase the production of these biomarkers.

Biomarkers detection becomes thus much easier and can provide an earlier diagnosis to doctors than biopsies. Early detections of cancers allow early and less burdensome treatments, increasing also the chances of recovery.

Iron oxide nanoparticles are one useful tool against cancer because, when nano-engineered with a specific coating, they bind particularly well to the tumors.Their magnetic properties make them suitable imaging agents with MRI-scans while their size and concentration in the tumor allow a very high resolution and an accurate mapping of lesions. Surgeons can thus rely on this to select properly patients and plan the surgical removal of the tumor.

In therapy, nanotechnology is at the forefront of both targeted drug delivery and intrinsic therapies. For instance, nanoparticles can already be injected into the tumor and then be activated to produce heat and destroy cancer cells locally either by magnetic fields, X-Rays or light. Meanwhile the encapsulation of existing chemotherapy drugs or genes allows much more localized delivery both reducing significantly the quantity of drugs absorbed by the patient for equal impact and the side effects on healthy tissues in the body.

Coupling both modes of action has also been achieved with gold nanorods carrying chemotherapy drugs and locally excited in the tumor by infrared light. The induced heat both releases the encapsulated drug and helps destroying the cancer cells, resulting in a combined effect of enhanced delivery and intrinsic therapy.

Read this article:
Nanomedicine in Cancer ETP Nanomedicine

Read the Rest...

Nanomedicine – Official Site

§ May 8th, 2016 § Filed under Nano Medicine Comments Off on Nanomedicine – Official Site

This site uses cookies to improve performance. If your browser does not accept cookies, you cannot view this site.

There are many reasons why a cookie could not be set correctly. Below are the most common reasons:

This site uses cookies to improve performance by remembering that you are logged in when you go from page to page. To provide access without cookies would require the site to create a new session for every page you visit, which slows the system down to an unacceptable level.

This site stores nothing other than an automatically generated session ID in the cookie; no other information is captured.

In general, only the information that you provide, or the choices you make while visiting a web site, can be stored in a cookie. For example, the site cannot determine your email name unless you choose to type it. Allowing a website to create a cookie does not give that or any other site access to the rest of your computer, and only the site that created the cookie can read it.

See the rest here:
Nanomedicine – Official Site

Read the Rest...

Nanotechnology Cancer Treatments – HowStuffWorks

§ May 7th, 2016 § Filed under Nano Medicine Comments Off on Nanotechnology Cancer Treatments – HowStuffWorks

Nanotechnology is one of the most popular areas of scientific research, especially with regard to medical applications. We’ve already discussed some of the new detection methods that should bring about cheaper, faster and less invasive cancer diagnoses. But once the diagnosis occurs, there’s still the prospect of surgery, chemotherapy or radiation treatment to destroy the cancer. Unfortunately, these treatments can carry serious side effects. Chemotherapy can cause a variety of ailments, including hair loss, digestive problems, nausea, lack of energy and mouth ulcers.

But nanotechnologists think they have an answer for treatment as well, and it comes in the form of targeted drug therapies. If scientists can load their cancer-detecting gold nanoparticles with anticancer drugs, they could attack the cancer exactly where it lives. Such a treatment means fewer side effects and less medication used. Nanoparticles also carry the potential for targeted and time-release drugs. A potent dose of drugs could be delivered to a specific area but engineered to release over a planned period to ensure maximum effectiveness and the patient’s safety.

These treatments aim to take advantage of the power of nanotechnology and the voracious tendencies of cancer cells, which feast on everything in sight, including drug-laden nanoparticles. One experiment of this type used modified bacteria cells that were 20 percent the size of normal cells. These cells were equipped with antibodies that latched onto cancer cells before releasing the anticancer drugs they contained.

Another used nanoparticles as a companion to other treatments. These particles were sucked up by cancer cells and the cells were then heated with a magnetic field to weaken them. The weakened cancer cells were then much more susceptible to chemotherapy.

It may sound odd, but the dye in your blue jeans or your ballpoint pen has also been paired with gold nanoparticles to fight cancer. This dye, known as phthalocyanine, reacts with light. The nanoparticles take the dye directly to cancer cells while normal cells reject the dye. Once the particles are inside, scientists “activate” them with light to destroy the cancer. Similar therapies have existed to treat skin cancers with light-activated dye, but scientists are now working to use nanoparticles and dye to treat tumors deep in the body.

From manufacturing to medicine to many types of scientific research, nanoparticles are now rather common, but some scientists have voiced concerns about their negative health effects. Nanoparticles’ small size allows them to infiltrate almost anywhere. That’s great for cancer treatment but potentially harmful to healthy cells and DNA. There are also questions about how to dispose of nanoparticles used in manufacturing or other processes. Special disposal techniques are needed to prevent harmful particles from ending up in the water supply or in the general environment, where they’d be impossible to track.

Gold nanoparticles are a popular choice for medical research, diagnostic testing and cancer treatment, but there are numerous types of nanoparticles in use and in development. Bill Hammack, a professor of chemical engineering at the University of Illinois, warned that nanoparticles are “technologically sweet” [Source: Marketplace]. In other words, scientists are so wrapped up in what they can do, they’re not asking if they should do it. The Food and Drug Administration has a task force on nanotechnology, but as of yet, the government has exerted little oversight or regulation.

For more information on nanoparticles, medical research and other related topics, please check out the links on the next page.

Read this article:
Nanotechnology Cancer Treatments – HowStuffWorks

Read the Rest...

What is nanotechnology? : Physics and Nanotechnology …

§ May 7th, 2016 § Filed under Nano Medicine Comments Off on What is nanotechnology? : Physics and Nanotechnology …

Nano Basics

Nanotechnology harnesses the unusual behaviors of materials at a very small scale to achieve amazing scientific and practical results. A nanometer is one-billionth of a meter. A sheet of paper is about 100,000 nanometers thick. Dimensions between approximately 1 and 100 nanometers are known as the nanoscale.

Materials behave in different and often useful ways at the nanoscale. Applications of these unusual properties are emerging in aerospace, agriculture, biotechnology, medicine, energy, environmental improvement, information technology, transportation, and impact homeland security and national defense. Nanotechnology is used in everything from electronic devices to sunscreensrapidsly expanding and predicted to grow jobs by leaps and bounds. (The U.S. Department of Labor predicts an increase up to 2 million jobs related to nanotech, from 200,000 in 2010.)

New commercial applications of nanotechnology expected in two to five years in these and other industries include:

Its difficult to predict what products will move from the laboratory to the marketplace over longer periods, but it is believed nanotechnology will facilitate the production of ever-smaller computers that store vastly greater amounts of information and process data much more quickly than those available today. Computing elements are expected to be so inexpensive that they can be in fabrics (for smoke detection, for instance) and other materials.

For more information on the basics of nanotechnology, visit the National Nanotechnology Initiative FAQ.

Read more from the original source:
What is nanotechnology? : Physics and Nanotechnology …

Read the Rest...

Robotic Prostate Surgery FAQ by David Samadi, MD …

§ May 7th, 2016 § Filed under Nano Medicine Comments Off on Robotic Prostate Surgery FAQ by David Samadi, MD …

Q. Do you do the entire surgery yourself, from beginning to end? A. Yes, I am present throughout and conduct every step of the surgery. The use of the word robotic is sometimes confusing to people. I am assisted by the robotic technology, but the machine, which is merely an advanced aid, could never function without me. I never leave the room and I perform every step of the operation myself. Q. How is the robotic program at Lenox Hill different from other hospitals? A. If you choose me as your surgeon, youre getting three doctors in one. Let me explain what I mean by that. Ive performed traditional (or open surgery), laparoscopic surgery, and robotic surgery. I bring all 3 methods to my practice and each builds on the next. Another hugely important difference is my staff. The team I work with has been with me for 7 years. They get to know our patients and work with them through every stage of the process. They attend to patients before, during and after surgery. It is uncommon to find this level of consistency and personal care and it’s exceptional to get this level of expertise from a surgical staff.

Back to Top

Back to Top

Back to Top

See the rest here:
Robotic Prostate Surgery FAQ by David Samadi, MD …

Read the Rest...

Sports Medicine Research: In the Lab & In the Field: Which …

§ May 7th, 2016 § Filed under Nano Medicine Comments Off on Sports Medicine Research: In the Lab & In the Field: Which …

Treatment for Acute Anterior Cruciate Ligament Tear: Five Year Outcome of Randomised Trial

Frobell RB, Roos, HP, Roos EM, Roemer FW, Ranstam J, & Lohmander LS. BMJ. 2013, 346: f232. doi: 10.1136/bmj.f232

This is the first randomized clinical trial to explore this important question and it appears that ACL surgery timing does not really seem to affect any major outcome at a 5 year follow-up. It is interesting to see that early ACL surgery does not necessarily provide better outcomes. Furthermore, of those assigned to the optional delayed surgery group, about 50% never needed surgery. There were no differences between those surgically repaired early, late, or with rehabilitation alone. This may emphasize the importance of the rehabilitation process, since all patients underwent similar rehabilitation processes. The study controlled for meniscal status, but did not report any correlations between meniscal status and outcomes, which would be interesting to see. Based on this study it may be safe to delay the ACL reconstruction to determine if the patient can tolerate conservative management through rehabilitation and successfully return to play after an ACL injury. I am extremely interested in following these same patients out to a later time point. But ultimately, an ACL tear may not necessitate surgery, and rehabilitation should be considered as a possible option. Has anyone had any success with conservative management of ACL injuries?

Written by: Nicole Cattano

Reviewed by: Jeffrey Driban

Related Posts:

Original Paper with 2-year Follow-up:

Read more here:
Sports Medicine Research: In the Lab & In the Field: Which …

Read the Rest...

Research – Brady Urological Institute

§ May 7th, 2016 § Filed under Nano Medicine Comments Off on Research – Brady Urological Institute

A PUBLICATION OF THE PATRICK C. WALSH PROSTATE CANCER RESEARCH FUND

Partin Honored: Alan W. Partin, M.D., Ph.D., the Jakurski Family Director and the Chairman of the Brady Urological Institute, received a Distinguished Contribution Award at the American Urological Association’s 2015 annual meeting. Presented by the AUA’s president, William W. Bohnert, M.D., the award cites Partin’s “contributions to science, most importantly, the creation of the ‘Partin Tables,’ which are used by urologists throughout the world.”

Changing Prostate Cancer

“What does my diagnosis of prostate cancer mean?” For a century, our doctors and scientists here at the Brady have worked to answer that question on every level. Our discoveries have transformed the way organ-confined disease is treated and continue to bring new hope to men with metastatic disease. Our Active Surveillance program, pioneered by Bal Carter, has helped many men with slow-growing, small-volume disease avoid surgery safely; and now work by uropathologist Jonathan Epstein is actually changing the way the disease is diagnosed. For example, Gleason score 3 +3 is its own category, Grade Group 1; Gleason 3 + 4 is Grade Group 2, and Gleason 4 + 3 is Grade group 3. There are only five groups, and Gleason score 8 is a distinct group, because those men have different disease than men with Gleason scores 9 and 10. The World Health Organization has accepted this system, and it will soon be used at hospitals everywhere. In this exciting issue of Discovery, we’re proud to tell you about our latest work in immunotherapy, in dietary prevention, our work with robots, our advances in understanding genetic risk, our successes in molecular biology, and other breakthroughs including the successful imaging of individual cells of prostate cancer throughout the body which opens up new targets for treating metastatic disease.

We also bring to you our continuing advances in diagnosis, treatment and active surveillance of kidney cancer, in refining treatment for bladder cancer, and a new advance in the laparoscopic treatment of testicular cancer.

Your generosity makes us able to do more, so that we can continue to improve the lives of people with urological diseases. Thank you for being our partners in discovery.

Best wishes, Alan W. Partin, M.D., Ph.D. Jakurski Family Director and Chairman of The Brady Urological Institute

Founders Circle Anonymous (3) Mr. and Mrs. Robert B. Aikens Ambrose Monell Foundation Mr. and Mrs. Robert C. Baker Family Foundation Mary Ann and Bill Becker George and Mary Nell Berry Dr. and Mrs. Peter S. Bing Mr. Keith Bremer Elva E. and William W. Carty Jennifer A. Chalsty John S. Chalsty The Deeks Family Foundation R. Christian B. Evensen Phyllis and Brian L. Harvey Heather C. and Patrick Henry Charlton C. and F. Patrick Hughes Beverly A. and Gary L. McDonald Jean and Ian MacKechnie Beth W. and A. Ross Myers Nancy and Jim O’Neal Jack W. Shay and Thomas C. Quirt The Frank E. Rath Spang & Company Charitable Trust Mr. and Mrs. Paul W. Sandman The Peter Jay Sharp Foundation Irene and Bernard L. Schwartz Virginia and Warren Schwerin Donald and Susan Sturm Carolyn and Bill Stutt Mr. and Mrs. Charles B. Thornton, Jr. Luciana and Joe Vittoria For additional news and updates from the Brady Institute, please follow us on any of our social media sites:

Long days, short weekends, unparalleled research experience: Mentor Sarah Amend, a postdoctoral fellow in Kenneth Pienta’s lab, with student Sounak Roy. Click here for more info

It may not be a particularly restful summer vacation, but it “SURE” is a one-of-a-kind chance for students who are interested in urological and cancer research to learn from some of top scientists in the field, in the laboratory and at lectures and seminars. “It’s a wonderful opportunity for young investigators to see how research done at the bench can be translated into patient care,” says Ken Pienta, M.D., the Donald S. Coffey Professor of Urology and Director of Research. The 10-week program offers a stipend of $3,000. Housing is provided near the Johns Hopkins University, and shuttle transportation to the medical campus is free.

“This summer internship requires a full-time commitment,” says Pienta. “Interns should be prepared for long days and short weekends. But the experience is unparalleled.”

If you would like to support this wonderful program or even sponsor a student, please see the envelope in this issue of Discovery

A History of the James Buchanan Brady Urological Institute at Johns Hopkins By Patrick C. Walsh and Janet Farrar Worthington Featuring 380 Richly Illustrated Pages 2015 The James Buchanan Brady Urological Institute and Johns Hopkins Medicine

For a century, the Brady has been the world’s leading urological institute. Read about our past, meet our scientists and faculty members, and join us as we look ahead to the next 100 years! In this richly illustrated book, packed with stories that bring some of the greatest names in Urology to life, you’ll learn:

Discovery is published by THE JAMES BUCHANAN BRADY UROLOGICAL INSTITUTE Johns Hopkins Medical Institutions Baltimore, Maryland 21287-2101 410.955.8434 | urology.jhu.edu

Patrick Walsh, M.D., University Distinguished Service Professor of Urology Janet Farrar Worthington Writer/Editor Hatcher Design Office Art Direction Kieth Weller Principal Photography

With this book, you will learn answers to these and other important questions:

Comprehensive, reassuring, and full of hope.

Available from Warner Wellness – http://www.hbgusa.com or call 800-759-0190

Read the original:
Research – Brady Urological Institute

Read the Rest...

Research | UCSF Department of Urology

§ May 7th, 2016 § Filed under Nano Medicine Comments Off on Research | UCSF Department of Urology

UCSF urology faculty member Davide Ruggero, PhD, and colleagues recently reported on a mechanism that may help explain how prostate cancers develop resistance to drugs that block tumor growth. Their…

A UCSF database that has helped transform the diagnosis and treatment of prostate cancer marks its 20th anniversary this year. Since its inception, the Cancer of the Prostate Strategic Urologic…

Lead Author Stacey Kenfield, ScD, Assistant Professor, UCSF Urology publishes findings to further support a healthy lifestyle including vigorous exercise is a key factor in decreasing the risk of…

Anne M. Suskind, MD, MS, Assistant Professor, UCSF Department of Urology, has been awarded a $50,000 grant from the Society of Urodynamics Female Pelvic Medicine & Urogenital Reconstruction (…

June M. Chan, ScD, Professor Epidemiology & Biostatistics and Urology appeared today on KQED’s Forum with Michael Krasny to discuss the World Health Organization’s findings that consumption of…

Drs. Matthew Truesdale, Michael Leapman, and Sima Porten shined at this years AUA Western Section, held this year in Indian Wells, CA. Miley B. Wesson Resident Essay Winners 1ST PLACE: Matthew…

Medicine today generates vast amounts of patient information, but figuring out what it all means can be a dizzying task. A new member of the Department of Urology, Mark Bridge, is working in the…

Read more from the original source:
Research | UCSF Department of Urology

Read the Rest...

Robotic Surgery – ololrmc.com

§ May 7th, 2016 § Filed under Nano Medicine Comments Off on Robotic Surgery – ololrmc.com

About Robotic Surgery Robotic surgery, or robot-assisted surgery, allows our surgeons to perform many types of complex procedures with more precision, flexibility and control than is possible with conventional techniques. Robotic surgery is an advanced form of minimally invasive or laparoscopic (small incision) surgery where surgeons use a computer-controlled robot to assist them in certain surgical procedures.

Our specially trained surgeons can use the da Vinci System to perform complex surgeries with a minimally invasive approach that disturbs less tissue surrounding the area being worked on, minimizing and controlling bleeding. The robotic surgical system includes a camera arm and mechanical arms with surgical instruments attached to them. The surgeon controls the arms while seated at a computer console near the operating table. The console gives the surgeon a high-definition, magnified, 3-D view of the surgical site. The robot’s “hands” have a high degree of dexterity, allowing surgeons the ability to operate in very tight spaces in the body that would otherwise only be accessible through open (long incision) surgery. The surgical team supervises the robot at the patient’s bedside.

Surgeon seated at the computer console of the da Vinci Xi Surgical System

The da Vinci Xi Surgical System

Robotic surgery offers many benefits to patients compared to open surgery, including:

Visit link:
Robotic Surgery – ololrmc.com

Read the Rest...

Robotic Surgery – The Institute for Women’s Health

§ May 7th, 2016 § Filed under Nano Medicine Comments Off on Robotic Surgery – The Institute for Women’s Health

What is da Vinci surgery?

The da Vinci Surgical System is one of the most effective, least invasive treatment options for a range of uterine conditions. The da Vinci Surgical System enables surgeons to perform with unmatched precision and control using only a few small incisions.

Although the general term robotic surgery is often used to refer to the technology, this term can give the impression that the robot is performing the surgery. In contrast, the da Vinci Surgical System cannot in any manner run on its own. It is actually robotically-assisted surgery. The System is designed to seamlessly replicate the movement of the surgeons hands with the tips of micro-instruments. The System cannot make decisions, nor can it perform any type of movement or maneuver without the surgeons direct input.

Devices for robotically-assisted surgery are designed to perform regulated and controlled movements after being programmed by a surgeon. The da Vinci Surgical System is a computer-enhanced system that interposes a computer between the surgeons hands and the tips of micro-instruments. The system replicates the surgeons movements in real time.

The da Vinci Surgical System was approved by the Food and Drug Administration in August of 2005. Since then, our surgeons at the Institute For Womens Health have successfully performed over 500 of these procedures.

For more information, please visit http://www.davincisurgery.com

See more at: http://www.ifwh.org/en/services/147-robotic-surgery#sthash.7YClskQ8.dpuf

Excerpt from:
Robotic Surgery – The Institute for Women’s Health

Read the Rest...

Robotic Surgery | Laparoscopic – trmbaby.com

§ May 7th, 2016 § Filed under Nano Medicine Comments Off on Robotic Surgery | Laparoscopic – trmbaby.com

IVF Tennessee > Fertility Info: Health Library > Infertility Treatments > Robotic Surgery

At Tennessee Reproductive Medicine, we help our patients understand all options and only resort to surgery when it provides the best potential for positive results. When surgery is necessary, we offer the most advanced option possible- advanced robotic laparoscopy.

Robotic surgery is an advanced form ofminimally invasivesurgery (also known as laparoscopic surgery). Laparoscopic surgery has changed the way TRM treats most complex gynecologic disorders.

Surgeries for endometriosis, fibroids, pelvic adhesions and tubal blockage previously required a large abdominal incision, inpatient hospital care, and a prolonged recovery. All of these conditions can now be treated with less invasive techniques including laparoscopy.

Minimally invasivesurgery reduces a patients pain and recovery time due to the use of small incisions, instead of the large incisions that are required with traditional abdominal surgery.

Miniaturized surgical instruments are inserted through openings as small as .5 cm, and a small camera is inserted through a separate incision.

The doctor manipulates these instruments while monitoring the process on video. By adding a robotic arm to the laparoscopic process, a surgeon gains precision and range of motion that would be impossible with manually controlled surgery.

Computer controlled scaling gives the doctor the ability to visually zoom in and out to identify areas of interest, and offers high definition and three dimensional visualization which enhance his/her ability to detect abnormalities.

Robotic arms also move the abdominal wall much less than traditional laparoscopic instruments, which reduces postoperative abdominal wall pain.

Original post:
Robotic Surgery | Laparoscopic – trmbaby.com

Read the Rest...

Robotic surgery – UT Medical Center

§ May 7th, 2016 § Filed under Nano Medicine Comments Off on Robotic surgery – UT Medical Center

Definition

Robotic surgery is a method to perform surgery using very small tools attached to a robotic arm. The surgeon controls the robotic arm with a computer.

Robot-assisted surgery; Robotic-assisted laparoscopic surgery; Laparoscopic surgery with robotic assistance

You will be given general anesthesia so that you are asleep and pain-free.

The surgeon sits at a computer station and directs the movements of a robot. Small surgical tools are attached to the robot’s arms.

Robotic surgery is similar to laparoscopic surgery. It can be performed through smaller cuts than open surgery. The small, precise movements that are possible with this type of surgery give it some advantages over standard endoscopic techniques.

The surgeon can make small, precise movements using this method. This can allow the surgeon to do a procedure through a small cut that once could be done only with open surgery.

Once the robotic arm is placed in the abdomen, it is easier for the surgeon to use the surgical tools than with laparoscopic surgery through an endoscope.

The surgeon can also see the area where the surgery is performed more easily. This method lets the surgeon move in a more comfortable way, as well.

Robotic surgery can take longer to perform. This is due to the amount of time needed to set up the robot. Also, many hospitals may not have access to this method.

Robotic surgery may be used for a number of different procedures, including:

Robotic surgery cannot be used for some complex procedures.

The risks for any anesthesia and surgery include:

Robotic surgery has as many risks as open and laparoscopic surgery. However, the risks are different.

You cannot have any food or fluid for 8 hours before the surgery.

You may need to cleanse your bowels with an enema or laxative the day before surgery for some types of procedures.

Stop taking aspirin, blood thinners such as warfarin (Coumadin) or Plavix, anti-inflammatory medicines, vitamins, or other supplements 10 days before the procedure.

You will be taken to a recovery room after the procedure. Depending on the type of surgery performed, you may have to stay in the hospital overnight or for a couple of days.

You should be able to walk within a day after the procedure. How soon you are active will depend on the surgery that was done.

Avoid heavy lifting or straining until your doctor gives you the OK. Your doctor may tell you not to drive for at least a week.

Surgical cuts are smaller than with traditional open surgery. Benefits include:

Eichel L, McDougall EM, Clayman RV. Fundamentals of laparoscopic and robotic urologic surgery. In: Wein AJ, ed. Campbell-Walsh Urology. 10th ed. Philadelphia, PA: Elsevier Saunders; 2011:chap 9.

Fried GM. Emerging technology in surgery: Informatics, electronics, robotics. In: Townsend CM Jr, Beauchamp RD, Evers BM, Mattox KL, eds. Sabiston Textbook of Surgery. 19th ed. Philadelphia, PA: Elsevier Saunders; 2012:chap 17.

Hu JC, Gu X, Lipsitz SR, Barry MJ, D’Amico AV, Weinberg AC, et al. Comparative effectiveness of minimally invasive vs. open radical prostatectomy. JAMA. 2009;302(14):1557-64. PMID: 19826025 http://www.ncbi.nlm.nih.gov/pubmed/19826025.

Oleynikov D. Robotic surgery. Surg Clin N Am. 2008;88:1121-30. PMID: 18790158 http://www.ncbi.nlm.nih.gov/pubmed/18790158.

Review Date: 6/29/2015 Reviewed By: Jennifer Sobol, DO, Urologist with the Michigan Institute of Urology, West Bloomfield, MI. Review provided by VeriMed Healthcare Network. Also reviewed by David Zieve, MD, MHA, Isla Ogilvie, PhD, and the A.D.A.M. Editorial team.

A.D.A.M., Inc. is accredited by URAC, also known as the American Accreditation HealthCare Commission (www.urac.org). URAC’s accreditation program is an independent audit to verify that A.D.A.M. follows rigorous standards of quality and accountability. A.D.A.M. is among the first to achieve this important distinction for online health information and services. Learn more about A.D.A.M.’s editorial policy, editorial process and privacy policy. A.D.A.M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health on the Net Foundation (www.hon.ch).

The information provided herein should not be used during any medical emergency or for the diagnosis or treatment of any medical condition. A licensed medical professional should be consulted for diagnosis and treatment of any and all medical conditions. Call 911 for all medical emergencies. Links to other sites are provided for information only — they do not constitute endorsements of those other sites. 1997- A.D.A.M., Inc. Any duplication or distribution of the information contained herein is strictly prohibited.

See the article here:
Robotic surgery – UT Medical Center

Read the Rest...

« Older Entries





Page 11234..1020..»