Radiation therapy, macrophages improve efficacy of nanoparticle-delivered cancer therapy – Medical Xpress

§ June 1st, 2017 § Filed under Nano Medicine Comments Off on Radiation therapy, macrophages improve efficacy of nanoparticle-delivered cancer therapy – Medical Xpress

May 31, 2017 In this illustration based on in vivo microscopy, a tumor-associated macrophage (green) induces a burst of leakage from a tumor blood vessel (red), which releases nanoparticles into the tumor tissue (yellow). The large arrow shows nanoparticles being taken up by the macrophage, while the small dashed arrow depicts how the macrophage elicits further nanoparticle delivery via vascular bursting. Credit: Miles Miller, PhD, and Ralph Weissleder, MD, PhD; Center for Systems Biology, Massachusetts General Hospital

A Massachusetts General Hospital (MGH) research team has identified a surprising new role for the immune cells called macrophagesimproving the effectiveness of nanoparticle-delivered cancer therapies. In their Science Translational Medicine report, the investigators describe finding how appropriately timed radiation therapy can improve the delivery of cancer nanomedicines as much as 600 percent by attracting macrophages to tumor blood vessels, which results in a transient “burst” of leakage from capillaries into the tumor.

“The field of nanomedicine has worked to improve selective drug delivery to tumors for over a decade, typically by engineering ever more advanced nanomaterials and often with mixed clinical success,” says lead author Miles Miller, PhD, of the MGH Center for Systems Biology. “Rather than focusing on the nanoparticles themselves, we used in vivo microscopy to discover how to rewire the structure of the tumor itself to more efficiently accumulate a variety of nanomedicines already in clinical use.”

Encapsulating cancer drugs in nanoparticles can improve pharmacokineticshow a drug is absorbed, distributed, metabolized and excretedby extending a drug’s presence in the circulation and avoiding the toxic solvents used in infusion chemotherapy. But in clinical practice, delivering nanoencapsulated drugs into patients’ tumors has been challenging, largely because of known factors in the microenvironment of the tumor. High pressures within tumors and low permeability of tumor blood vessels limit the passage of any drugs from the circulation into tumor cells.

The video will load shortly

A 2015 study by Miller and his colleagues showed that tumor-associated macrophages can improve delivery of nanoparticle-based therapies to tumor cells, and radiation therapy is known to increase the permeability of tumor vessels. But exactly how these effects are produced and how they could be combined to enhance nanomedicine delivery was not known. Answering those questions was the goal of the current study.

Experiments in mouse models of cancer revealed that radiation therapy produced important changes in the tumor microenvironmentincluding greater blood vessel size and permeability and an increase in the number of macrophages relative to tumor cells. These changes did not appear until 3 to 4 days after administration of radiation therapy and disappeared by day 11. Analysis of patient biopsy samples taken before and several days after radiation therapy for breast or cervical cancer revealed significant macrophage expansion in post-radiation samples, with the greatest increases in patients receiving the highest radiation dosage.

Additional mouse studies showed that, beginning three days after radiation therapy, the uptake of nanoparticles but not of solvent-delivered drugs approximately doubled. High-resolution in vivo microscopy revealed that increases in vascular permeability occurred erratically, with periods of low permeability interrupted by a bursting of vascular contents, including nanoparticles, into the tumors. The rate of bursting increased three days after radiation and was higher on larger blood vessels with adjacent macrophages. Removal of macrophages prevented the radiation-induced changes and the increased uptake of nanoparticles. Combining radiation therapy with cyclophosphamide – a DNA-damaging drug that enhances nanoparticle delivery to tumor cells through similar tumor-priming mechanisms – led to even greater nanoparticle uptake.

Testing the therapeutic effect of combining radiation therapy with a nanoparticle-encased chemotherapy drugs in a mouse model confirmed the efficacy of the strategy and the key role of macrophages. While combining radiation with a solvent-based drug had no benefit compared with radiation alone, delivery of a nanoencapsulated version of the same drug three days after radiation therapy eliminated most tumors, an effect that was significantly reduced if macrophages were depleted.

“Finding that this combination of radiation and nanomedicine leads to synergistic tumor eradication in mice provides motivation for clinical trials that combine tumor rewiring using radiation therapy with nanomedicine,” says Miller, who is an instructor in Medicine at Harvard Medical School. “Most of the treatments and nanomedicines employed in this study are FDA approved for cancer treatment, so this combination treatment strategy could be tested in clinical trials relatively quickly. And given the role of macrophages in this approach, we are particularly interested in combining tumor irradiation and nanomedicine with immuno-oncology therapies.”

Explore further: Researchers deliver first ‘nanotherapeutics’ to tumor

More information: M.A. Miller el al., “Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts,” Science Translational Medicine (2017). stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.aal0225

For the first time, WSU researchers have demonstrated a way to deliver a drug to a tumor by attaching it to a blood cell. The innovation could let doctors target tumors with anticancer drugs that might otherwise damage healthy …

Pancreatic cancer has long been one of the hardest to treat. Now, in a new study, researchers at the Perelman School of Medicine at the University of Pennsylvania have illuminated one of this cancer’s major resistance mechanisms: …

Some cancer therapies aim at stopping tumor growth by affecting the blood vessels that nurture the tumor mass, while others act on the immune system attempting to eliminate the tumor. Researchers at Baylor College of Medicine …

Many types of cancer become drug resistant, making them difficult to treat. Researchers with University of California San Diego School of Medicine and Moores Cancer Center have identified a strategy to selectively sensitize …

The effects of a promising new approach to chemotherapy that involves frequent administration of dosage levels much lower than traditionally used appears to rely on the “normalization” of blood vessels within and around a …

Imaging probes that specifically target tumors can provide more sensitive and relevant information about the tumor compared to conventional, non-specific probes. Additionally, targeted probes can improve tumor detection, …

A Massachusetts General Hospital (MGH) research team has identified a surprising new role for the immune cells called macrophagesimproving the effectiveness of nanoparticle-delivered cancer therapies. In their Science …

Duke University researchers have developed a handheld device for cervical cancer screening that promises to do away with uncomfortable speculums and high-cost colposcopes.

New research led by Queen’s University Belfast has discovered how a genomic approach to understanding bowel (colorectal) cancer could improve the prognosis and quality of life for patients.

Batman and Robin. Sherlock Holmes and Dr. Watson. Fiction is full of dynamic duos that work together to accomplish amazing feats. When one partner is out of commission, the other steps in to make sure the job gets done. But …

Research in the field of kidney cancer, also called renal cancer, is vital, because many patients with this disease still cannot be cured today. Researchers from the University of Zurich have now identified some of the gene …

A University of Otago, Christchurch, discovery of missing DNA in women who develop breast cancer at a young age could hold the key to helping them beat the disease.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

See the original post:
Radiation therapy, macrophages improve efficacy of nanoparticle-delivered cancer therapy – Medical Xpress

Comments are closed.