Page 10«..9101112..2030..»

Nanomedicine – Wikiversity

§ October 21st, 2015 § Filed under Nano Medicine Comments Off on Nanomedicine – Wikiversity

Dr SHOEB MUSTAFA, DEPT. OF MICROBIOLOGY, J.N.MEDICAL COLLEGE AND HOSPITAL,A.M.U, ALIGARH E MAIL:SHOEBMUSTAFA82@INDIATIMES.COM

Nanomedicine is the medical application of nanotechnology. It covers areas such as nanoparticle drug delivery and possible future applications of molecular nanotechnology (MNT) and nanovaccinology. The most important innovations are taking place in drug delivery which involves developing nanoscale particles or molecules to improve bioavailability. In vivo imaging is another area where tools and devices are being developed. Using nanoparticle contrast agents, images such as ultrasound and MRI have a favorable distribution and improved contrast. The new therapies and surgeries that are being developed might be effective in treating illnesses and diseases such as cancer.

Nanopharmocology is the use of nanotechnology for pharmacology applications such as: the formation of novel nanoscopic entities [1], exploring and matching specific compounds to particular patients for maximum effectiveness; and advanced pharmaceutical delivery systems and discovery of new pharmacological molecular entities; selection of pharmaceuticals for specific individuals to maximize effectiveness and minimize side effects (2), and delivery of pharmaceuticals to targeted locations or tissues within the body. Nanoparticles can render targeted and sustained delivery of biological compounds to specific tissues with a minimum of systemic side effects.

Nanoparticles have unusual properties that can be used to improve drug delivery. Whereas larger particles would have been cleared from the body, cells take up these nanoparticles because of their size. The particulates from drug delivery systems lower the volume of distribution and reduce the effect on non-target tissue. Development of completely new drugs with more useful behavior and less side effects.

Nanocapsule, means sandy nanoparticle that consists of a shell and a space, in which desired substances may be placed. Drug-filled nanocapsules can be covered with antibodies or cell-surface receptors that bind to cancer or various cells and release their biological compound on contact with that tissue. Nanocapsules have been made using molecules called phospholipids, which are hydrophobic (water-repellant) on one end and hydrophilic (water-loving) on the other. When such molecules are placed in an aqueous environment, they can spontaneously form capsules in which the hydrophobic portions are inside (3), protecting them from contact with water.The walls of our cells are in fact made up of a double layer of such molecules. Inside the cells, similar capsules, called liposomes (literally, fat bodies), are used to transport material.

Nanotechnology chips with biosensors can find genes, guide drug discovery, monitor body functioning, and identify biologic and chemical pathogens. As nanotechnology and genetics advance, medibots and engineered beneficial microorganisms may be integrated into nanomedibots. Nanomedibots will be used to diagnosis and treat healing conditions that resist diagnosis and curing by current biomedical research. Medibots are robots or robotic systems that provide physicians with greater flexibility, precision of motion, and/or remote procedure capability in the diagnosis or treatment of medical conditions. Concerning macro-scale medibots (4), improvements in the conveyance of visual and directional information with sophisticated consoles and remote-controlled hardware are already enabling surgeons to conduct an increasing array of surgical procedures in a minimally invasive manner.

1. Nanoparticles of cadmium selenide (quantum dots) glow when exposed to ultraviolet light. When injected, they seep into cancer tumors. The surgeon can see the glowing tumor, and use it as a guide for more accurate tumor removal. 2. Sensor test chips containing thousands of nanowires, able to detect proteins and other biomarkers left behind by cancer cells, could enable the detection and diagnosis of cancer in the early stages from a few drops of a patient’s blood. [5] 3. Researchers at Rice University have demonstrated the use of 120nm diameter nanoshells coated with gold to kill cancer tumors in mice. The nanoshells can be targeted to bond to cancerous cells by conjugating antibodies or peptides to the nanoshell surface. By irradiating the area of the tumor with an infrared laser, which passes through flesh without heating it, the gold is heated sufficiently to cause death to the cancer cells [6]. 4. Dendrimer molecule has over a hundred hooks on it that allow it to attach to cells in the body for a variety of purposes. These molecules have also shown potential for targeted chemotherapy against tumor cells.

At Rice University, a flesh welder is used to fuse two pieces of chicken meat into a single piece. The two pieces of chicken are placed together touching. A greenish liquid containing gold-coated nanoshells is dribbled along the seam. An infrared laser is traced along the seam, causing the two sides to weld together. This could solve the difficulties and blood leaks caused when the surgeon tries to restitch the arteries he/she has cut during a kidney or heart transplant. The flesh welder could meld the artery into a perfect seal.

Arthrobotics is the application of robotic technology to help orthopedic surgeons in the healing, repair, and replacement of joint-related conditions. Current applications of arthrobotics involve arthroscopic automation and place enhancements, such as automated motion of the arthroscope, position sensors to guide it, and force sensors for tissue proximity control. Future arthrobotic usages might incorporate complete joint replacement with bionic bionics and neuro-computer interfaces for limb control from neural impulses in the brain.

Nanodevices could be observed at work inside the body using MRI, using mostly 13C atoms rather than the natural 12C isotope of carbon, since 13C has a nonzero nuclear magnetic moment. Medical nanodevices would first be injected into a human body, and would then go to work in a specific organ or tissue mass. The doctor will monitor the progress, and make certain that the nanodevices have gotten to the correct target treatment region. The doctor can actually see the nanodevices congregate around their target (a tumor mass, etc.). Tracking movement can help determine how well drugs are being distributed or how substances are metabolized.

There are somewhat speculative claims that using nanorobots [7] [8] in medicine, would totally change the world of medicine once it is realized. Nanomedicine [9] [10] would make use of these nanorobots, introduced into the body, to repair or detect damages and infections. According to Robert Freitas of the Institute for Molecular Manufacturing, a typical blood borne medical nanorobot would be between 0.5-3 micrometres in size, because that is the maximum size possible due to capillary passage requirement. Carbon would be the primary element used to build these nanorobots due to the inherent strength and other characteristics of some forms of carbon (diamond/fullerene composites), and nanorobots would be fabricated in desktop nanofactories [11] specialized for this purpose. Nanorobots could counter the problem of identifying and isolating cancer cells as they could be introduced into the bloodstream. These nanorobots would search out cancer affected cells using certain molecular markers. Medical nanorobots would then destroy these cells, and only these cells. Nanomedicines could be a very helpful and hopeful therapy for patients, since current treatments like radiation therapy and chemotherapy often end up destroying more healthy cells than cancerous ones. Nanorobots could also be useful in precision tissue- and cell-targeted drug delivery [12] [13], in performing nanosurgery [14], and in treatments for hypoxemia and respiratory illness[15] [16], dentistry [17] [18], bacteremic infections[19], physical trauma [20], gene therapy via chromosome replacement therapy [21] [22], and even biological aging [23].

Some possible applications using nanorobots are as follows: To cure skin diseases, a cream containing nanorobots may be used. A mouthwash full of smart nanomachines could identify and destroy pathogenic bacteria while allowing normal commensals to grow. Medical nanodevices could augment the immune system by finding and disabling unwanted bacteria and viruses just like leucocyte. Devices working in the bloodstream could nibble away at arteriosclerosis deposits, widening the affected blood vessels. Cell herding devices could restore artery walls and artery linings to prevent most heart attacks.

Neuro-electronic interfaces are a visionary goal dealing with the construction of nanodevices that will permit computers to be joined and linked to the nervous system. This idea requires the building of a molecular structure that will permit control and detection of nerve impulses by an external computer. The computers will be able to interpret, register, and respond to signals the body gives off when it feels sensations. The demand for such structures is huge because many diseases involve the decay of the nervous system (ALS and multiple sclerosis). Also, many injuries and accidents may impair the nervous system resulting in dysfunctional systems and paraplegia. If computers could control the nervous system through neuro-electronic interface, problems that impair the system could be controlled so that effects of diseases and injuries could be overcome. PROSPECTS: Treatment of paraplegia, hemiplegia and spondylosis following accidental injuries, vascular and due to other causes.

Using drugs and surgery, doctors can only encourage tissues to repair themselves. With molecular machines, there will be more direct repairs. The possibilities of these cell repair machines are impressive. Comparable to the size of viruses or bacteria, their compact parts will allow them to be more complex. As they open and close cell membranes or travel through tissue and enter cells and viruses, machines will only be able to correct a single molecular disorder like DNA damage or enzyme deficiency. Nanocomputers will be needed to guide these machines. These computers will direct machines to examine, take apart, and rebuild damaged molecular structures.

An example of the state of the nanobiotechnological art is Tejal Desai’s(Boston University) artificial pancreas. Dr. Desai has encased her mouse pancreatic cells in a membrane studded with “nanopores” a mere seven nanometres across. As glucose from the blood washes in through the nanopores (25), the enclosed islet cells respond by releasing insulin. At 7 nanometres, the pores are big enough to allow the passage of glucose and insulin,but antibodies, which are significantly larger, cannot squeeze through, and so cannot damage the islet cells.

Artificial muscles have been made from millions of carbon nanotubes. Like natural muscles, providing an electrical charge causes the individual fibres to expand and the whole structure to move (26). An artificial muscle with strength and speed equal to that of a human muscle may soon be possible. A new wave of technology and medicine is being created and its impact on the world is going to be monumental. From the possible applications such as drug delivery and in vivo imaging to the potential machines of the future, advancements in nanomedicine are being made every day.

Novel photon correlation spectroscopy and fluorescence-based techniques allow the visualization of single biomolecules such as specific proteins, enzymes, hormones, nucleic acids, and so on, in living cells and tissues.[2]

J Nanosci Nanotechnol. 2006 Sep-Oct;6(9-10):2769-75.

Nanoscience and NanotechnologyVol.6,2769-2775 2006 14.International Journal of Surgery (2005) – , – e -www.int-journal-surgery.com 15Freitas RA.Exploratory design in medical nanotechnology: a mechanical artificial red cell. Artif Cells Blood Substit Immobil Biotechnol. 1998 Jul;26(4):411-30. PMID: 9663339 [PubMed – indexed for MEDLINE] 16.http://www.foresight.org/Nanomedicine/Respirocytes. 17 Nanodentistry.Freitas RA.Zyvex Corp., Richardson, Texas 75081, USA J Am Dent Assoc. 2000 Nov;131(11):1559-65. 18 Robert A. Freitas Jr., Nanodentistry, J. Amer. Dent. Assoc. 131(November 2000):1559-1566. (Cover story) 19 Robert A. Freitas Jr., Journal of Evolution and Technology – Vol. 14 – April 2005 http://jetpress.org/volume14/freitas.html 20 IMM Report Number 18: Nanomedicine In conjunction with Foresight Update 41 Clottocytes: Artificial Mechanical Platelets ByRobertA.Freitas Jr. Research Scientist, Zyvex LLC 21 The future of nanofabrication and molecular scale devices in nanomedicine.Freitas RA. Zyvex Corp, Richardson, Texas, USA Stud Health Technol Inform. 2002;80:45-59 22 The Future of Nanofabrication and Molecular Scale Devices in Nanomedicine Robert A. Freitas Jr.,Research Scientist, Zyvex Corp.published July 2002 http://www.rfreitas.com/Nano/FutureNanofabNMed.htm 23 Death Is An Outrage Robert A. Freitas Jr. Lecture delivered by the author at the Fifth Alcor Conference on Extreme Life Extension, 16 November 2002, Newport Beach, CA, http://www.rfreitas.com/Nano/DeathIsAnOutrage. 24. Robert F. Jr. Nanotechnology Magazine 2 (1996) 8. Robert F. Jr. Artificial Cells 26 (1998) 411. 25. http://www.pnl.gov/energyscience/06-01/ws.htm 26. http://www.mondolithic.com

View original post here:
Nanomedicine – Wikiversity

Read the Rest...

UNSW Handbook Program – Nanotechnology – 3617

§ October 21st, 2015 § Filed under Nano Medicine Comments Off on UNSW Handbook Program – Nanotechnology – 3617

Faculty:Faculty of Science

Contact:http://www.science.unsw.edu.au

Campus:Kensington Campus

Career:Undergraduate

Typical Duration:4 Years

Typical UOC Per Semester:24

Min UOC Per Semester:3

Max UOC Per Semester:27

Min UOC For Award:192

UAC Code:429011

ATAR:87

International Entry Requirements:See International Entry Requirements

Award(s):

Bachelor of Science (Major)

Information valid for students commencing 2013. Students who commenced prior to 2013 should go to the Handbook’s Previous Editions

The Bachelor of Science (Nanotechnology) at UNSW is a multidisciplinary degree taught by the three Schools of Chemistry, Physics and Materials Science and Engineering. The degree is administered by the School of Chemistry, but all schools have a strong input and courses are also hosted by the School of Biotechnology and Biomolecular Sciences.

No other degree program at UNSW provides the breadth of study in science disciplines that students studying B. Sc. (Nanotechnology) receive. The award of B. Sc. (Nanotechnology) with Honours is made on successful completion of a specialist Nanotechnology research project in the final year of the program. Class sizes are typically 10-35, permitting considerable interaction between academics, researchers and students. This fosters close links between nanotechnology students and research schools. As of 2011, UNSW had graduated over 100 nanotechnologists, of whom four had received University medals.

Students entering B. Sc. (Nanotechnology) at UNSW should have a good high school education in physics, chemistry and mathematics. Organisations employ nanotechnology graduates because of their broad training, capacity to think critically and laterally, and their problem solving abilities. The National Nanotechnology Initiative (nano.gov) predicts that 2 million nanotechnology workers will be needed by 2015, across a broad spectrum of industries.

Close links have been developed between the degree course and the following research centres:

– Australian Centre for Nanomedicine – Centre of Excellence for Quantum Computation and Communication Technology – Australian National Fabrication Facility (ANFF) – ARC Photovoltaics Centre of Excellence – Mark Wainwright Analytical Centre

On completion of this program, students will have attained a comprehensive knowledge base in the field of nanotechnology.

Stage 1 (common for all students in the program)

Semester 1

Semester 2

Students then choose either a Nanodevices or Nanomaterials major, and follow the sequence of study outlined for the chosen major below:

Stage 2 (Nanodevices)

Semester 1

Semester 2

Stage 3 (Nanodevices)

Semester 1

Semester 2

Semester 1

Semester 2

Stage 4 (Nanodevices)

Nanomaterials Major Stage 2 (Nanomaterials)

Semester 1

Semester 2

Stage 3 (Nanomaterials)

Semester 1

Semester 2

Semester 1

Semester 2

Stage 4 (Nanomaterials)

Students in this program must satisfy the University’s General Education requirements. For further information, please refer to General Education in the Table of Contents (see left-hand side of this page).

See the rest here:
UNSW Handbook Program – Nanotechnology – 3617

Read the Rest...

Robotic Surgery | University of Michigan Health System

§ October 16th, 2015 § Filed under Nano Medicine Comments Off on Robotic Surgery | University of Michigan Health System

At the University of Michigan, we strive to use exciting, new technology that improves our patients’ outcomes and maintains their quality of life. Robotic surgery is one option that our surgeons excel in and continue to be at the forefront.

In 2001, The University of Michigan was among the first centers in the U.S. to utilize robotic technology for gynecological surgery. Currently we are one of a few surgery programs in the country with a dedicated robotic simulation center to train residents and physicians, plus develop new techniques for robotic surgery.

Conditions we treat and procedures we perform that may be appropriate for robotic surgery include:

Robotic surgery uses slender telescope-like instruments. The surgeon controls the robot from a console near the patient, where the operating field can be viewed in three dimensions. The robot acts as an extension of the surgeon’s hands, but with enhanced precision and dexterity, allowing more precise and accurate movements. As a result, complex surgeries can be performed through small incisions, with less blood loss and a quicker recovery.

We utilize the da Vinci Si Surgical System, which offers enhanced 3-D, high-definition vision with up to 10x magnification, which allows our surgeons to operate in small spaces more accurately. Your safety is increased by precise dissection and preservation of crucial nerves and vessels.

Read the rest here:
Robotic Surgery | University of Michigan Health System

Read the Rest...

What is nanomedicine | NanomedicineCenter.com

§ October 14th, 2015 § Filed under Nano Medicine Comments Off on What is nanomedicine | NanomedicineCenter.com

Nanomedicine is a subfield of nanotechnology. It is often defined as the repair, construction and control of human biological systems using devices built upon nanotechnology standards. Basically, nanomedicine is the medical application of nanotechnology. Nanostructured materials, engineered enzymes and many other products of biotechnology will be very useful in the future. Of course, the full potential of nanomedicine is unlikely to arrive until after complex, high-sofisticated, medically programmable nanomachines and nanorobots are developed. When that happens, every medical doctors dream will become reality. Having robots fabricated to nanometer precision (1 nanometer = 1 bilionth of a meter) will allow medical doctors to approach the human body at the cellular and molecular levels. Interventions such as repairing damaged tissues (bone, muscle, nerve) will be possible.

We all know that the mankind is still fighting against many complex illnesses like cancer, multiple sclerosis, cardiovascular diseases, Alzheimers and Parkinsons diseases, diabetes as well as some inflammatory or infectious diseases (i.e. HIV). Nanotechnology raises hopes and expectations for millions of patients that suffer from those diseases. For example, it is expected that doctors will be able to destroy the very first cancer cells and so stop the disease from growing.

Nanomedicine is a huge industry. Sales reached 6.8 billion dollars in 2004. Significant amounts of money are being invested in research USA and European Union are investing billions of dollars and plan to invest more in the future.

NIH established eight nanomedicine development centers which are staffed by multidisciplinary research teams including biologists, physicians, mathematicians, engineers and computer scientists. The intial phase of their program is directed towards gathering extensive information about the properties of nanoscale biological elements. This is very important and will help scientists to correct defects in unhealthy cells. The second phase has been approved recently and is directed towards applying the knowledge from the first phase in treating diseases.

European Technology Platform is a platforum formed by 53 European stakeholders. Their first task the group had was to write a vision document on nanotechnology in which experts describe the extrapolation of needs until 2020.

There are three key priorities in the future: nanotechnology-based diagnostics and imaging, targeted drug delivery and release and regenerative medicine.

According to the journal Nature Materials, there are over 130 nanotech-based drugs and delivery systems developed worldwide. Nanomedicine industry is expected continue to grow and have a significant impact on the economy.

More:
What is nanomedicine | NanomedicineCenter.com

Read the Rest...

Robotic Total Hip Replacement | MAKOplasty Hip Surgery …

§ October 12th, 2015 § Filed under Nano Medicine Comments Off on Robotic Total Hip Replacement | MAKOplasty Hip Surgery …

Robotic Total Hip Replacement

MAKOplasty Hip Total Hip Arthroplasty

MAKOplasty Hip is an innovative total hip replacement (arthroplasty) procedure that is performed using a highly advanced, surgeon-controlled robotic arm system. It can be a treatment option for people suffering with either non-inflammatory or inflammatory degenerative joint disease, and is designed to assist surgeons in attaining a new level of reproducible surgical precision in hip surgery.

The hip is a ball-and-socket joint consisting of the spherical head of the femur, or thighbone, which moves inside a cup-shaped hollow socket in the pelvis called the acetabulum. When cartilage in the hip wears down, bare bone is exposed. When bone-on-bone contact occurs within the joint it causes pain that can be felt in the groin, outside the hip, at the base of the spine, or radiating from the thigh to the knee. Hip implants reconstruct a bearing surface to replace lost cartilage and prevent painful bone-on-bone wear. Total hip replacement consists of removing diseased bone in the acetabulum, which is fit with a cup and liner, and replacing the femoral head with new head and stem components. Prior to the use of robotics this was done both free-hand (by eye) and by feel.

The goal of using robotic arm technology to perform hip replacement is to attain consistent precision in surgery. Accurate placement and alignment of implant components are a critical factor in hip replacement. The use of robotics helps me place the implants in the desired location with incredible accuracy, providing an excellent, stable biomechanical reconstruction and unprecedented leg length restoration. It is performed with the RIO Robotic Arm Interactive Orthopedic System. RIO enables me to use a 3-D anatomic reconstruction based on a CT scan of the patients own hip to pre-surgically plan implant positioning. During the procedure, it provides real-time data for intra-operative adjustments to further enable me to optimally align and position implants, and accurately reproduce the surgical plan.

I perform all robotic hip replacements via a muscle-sparing approach, i.e. no muscles are cut in exposure or preparation of the hip joint. The operation is performed by initially preparing the femur (thigh bone). Exact femoral bone resection never before possible is performed with the use of robotics. I then remove just the amount of bone required for the tight placement of the implant in the bone. The femoral components position is measured by RIO, and can be adjusted at this time. The actual femoral component is then implanted into the bone after robotic measurements obtained. Next, I use the robotic arm to accurately ream and shape the acetabulum to prepare it for cup placement. The RIO enables accuracy in controlling the depth of bone removal and determining the hips center of rotation which aides in implant positioning and alignment.

When the bone preparation is complete, I then use the robotic arm to aid in implantation of the cup(socket), and the plastic liner is locked into the metal cup. The femoral ball size is determined and attached to the stem to reconstruct leg length and soft tissue tension with the aid of robotic interaction. The robot ensures that I am able to both plan and place the components with enhanced accuracy and precision, while providing real time information in surgery. This allows adjustments, even minute, to be made prior to the culmination of the procedure, thus reducing the risk of subsequent complications/reoperations.

As a total hip arthroplasty procedure, MAKOplasty is typically covered by Medicare.

Related Brochures

You will need the Adobe Reader to view and print these documents.Get Adobe Reader.

Visit link:
Robotic Total Hip Replacement | MAKOplasty Hip Surgery …

Read the Rest...

RI Prostate Cancer Robotic Surgery at The Miriam Hospital

§ October 12th, 2015 § Filed under Nano Medicine Comments Off on RI Prostate Cancer Robotic Surgery at The Miriam Hospital

Thanks to the latest evolution in surgical technology, physicians now have an effective alternative to traditional open surgery and laparoscopy that allows them to provide patients with the best of both approaches.;

This alternative is the da Vinci Surgical System and The Miriam Hospital is now using this technology to treat prostate cancer.

Nearly one out of every six American men will develop prostate cancer. With greater awareness, prostate cancer detection is on the rise and mortality is declining. Moreover, better treatments are allowing more men to return to active and productive lives after treatment.

To remove the cancerous tumor-a procedure known as a prostatectomy-surgeons at The Miriam Hospital now have the option of using a robotic assisted, minimally invasive surgery that may be more precise, less painful and reduces blood loss.

For more information, please call 401-793-2500.

The genitourinary multidisciplinary clinic, a program of the Comprehensive Cancer Centers at Rhode Island and The Miriam hospitals, is the only one of its kind in the state: entirely dedicated to the care of patients with urologic malignancies.

Go here to see the original:
RI Prostate Cancer Robotic Surgery at The Miriam Hospital

Read the Rest...

Sports Medicine Research Laboratory – The Department of …

§ October 5th, 2015 § Filed under Nano Medicine Comments Off on Sports Medicine Research Laboratory – The Department of …

Sports Medicine Research Laboratory William Earnhardt 2012-04-13T03:23:32+00:00

Musculoskeletal disease is the most common, costly and debilitating form of injury / illness. Over 135 million people (>46% of US population) annually report musculoskeletal disease as a primary health concern. Of these individuals, over 61 million seek medical treatment each year due to musculoskeletal injury. As a result, over $950 billion dollars (>7% of US gross national product) are spent each year on total costs associated with musculoskeletal disease.

The negative consequences of musculoskeletal injury go far beyond the initial trauma and may have life threatening consequences as 31% of men and 24% percent of women permanently stop exercise after suffering musculoskeletal injury. Many chronic diseases, such as cardiovascular disease, diabetes, cancer, neurocognitive decline, and arthritis are linked to a lack of exercise / physical activity. Thus, the negative consequences of musculoskeletal injury and disease are devastating.

To address this public health problem, the Neuromuscular (NMRL) and Sports Medicine (SMRL) Research Laboratories are focused on identifying mechanisms, risk factors and preventive solutions for musculoskeletal injury, with an emphasis on ankle, knee, and shoulder joint injuries. Located in Fetzer Hall, the NMRL and SMRL combine to form over 4,200 ft2 of research space that is fully equipped to quantify all aspects of human movement, including optical and electromagnetic motion capture systems interfaced with force plates and EMG amplifiers. These facilities also include multiple diagnostic ultrasound devices and isokinetic dynamometers for real-time assessment of muscle mechanics and stimulators for eliciting both peripheral and central neuromuscular responses. Other equipment items include accelerometers, load cells, electrogoniometers, and hand-held dynamometers. These facilities also include office space equipped with multiple computers for use by graduate students and faculty.

In addition to conducting research in the areas of musculoskeletal disease and injury the NMRL and SMRL faculty have the ability to provide a variety of services that are beneficial to the community, including non-surgical management of musculoskeletal disease and injury, orthopaedic rehabilitation, prevention of musculoskeletal injury and disease, and performance enhancement.

Read the original:
Sports Medicine Research Laboratory – The Department of …

Read the Rest...

CLINAM – The Foundation

§ October 5th, 2015 § Filed under Nano Medicine Comments Off on CLINAM – The Foundation

CLINAM 9 / 2016 Conference and Exhibition

European & Global Summit for Cutting-Edge Medicine

June 26 29, 2016

Clinical Nanomedicine and Targeted Medicine –

Enabling Technologies for Personalized Medicine

Scientific Committee: Chairman Prof. Dr. med. Patrick Hunziker, University Hospital Basel (CH). MEMBERS Prof. Dr. Yechezkel Barenholz, Hebrew University, Hadassah Medical School, Jerusalem (IL). Dr. med. h.c. Beat Ler, MA, European Foundation for Clinical Nanomedicine, Basel (CH) Prof. Dr. Gert Storm, Institute for Pharmaceutical Sciences, Utrecht University, (NL) Prof. Dr. Marisa Papaluca Amati, European Medicines Agency, London (UK). Prof. Dr. med. Christoph Alexiou, University Hospital Erlangen (D) Prof. Dr. Gerd Binnig, Nobel Laureate, Munich (DE) Prof. Dr. Viola Vogel, Laboratory for Biologically Oriented Materials, ETH, Zrich (CH). Prof. Dr. Jan Mollenhauer, Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense (DK). Prof. Dr. med. Omid Farokhzad, Associate Professor and Director of Laboratory of Nanomedicine and Biomaterials, Harvard Medical School and Brigham and Women’s Hospital; Founder of BIND Therapeutics, Biosciences and Blend Therapeutics, Cambridge, Boston (USA) Prof. Dr. Dong Soo Lee, M.D. Ph. Chairman Department of Nuclear Medicine Seoul National University Seoul, Korea (invited) Prof. Dr.Lajos Balogh, Editorin in Chief, Nanomedicine, Nanotechnologyin, Biology and Medicine, Elsevier&nbsp and Member&nbsp of theExecutive Board, American Society for Nanomedicine in, Boston(USA) and other members.

Conference Venue: Congress Center, Messeplatz 21, 4058 Basel, Switzerland, Phone + 41 58 206 28 28, This email address is being protected from spambots. You need JavaScript enabled to view it. Organizers office: CLINAM-Foundation, Alemannengasse 12, P.B. 4016 Basel Phone +41 61 695 93 95, This email address is being protected from spambots. You need JavaScript enabled to view it.

In the previous eight years, the CLINAM Summit grew to the largest in its field with 12 presenting Noble Laureates and more than 500 participants from academia, industry, regulatory authorities and policy from over 40 different countries in Europe and worldwide. With this success and broad support by well beyond 20 renowned collaborating initiatives, the CLINAM-Summit is today one of the most important marketplaces for scientific exchange and discussions of regulatory, political and ethical aspects in this field of cutting edge medicine.

In particular, the CLINAM Summit emerged as exquisite forum for translation from bench to bedside, for European and international networking, and for industrial collaboration between companies, with academia, and point-of-contact with customers. The summit is presently the only place to meet the regulatory authorities from all continents to debate the needs of all stakeholders in the field with the legislators.

CLINAM 9/2016continues with its successful tradition to cover the manifold interdisciplinary fields of Clinical and Targeted Nanomedicine in major and neglected diseases. As special focus area, CLINAM 09/2016 adds translation and enabling technologies, including, for example, cutting-edge molecular profiling, nano-scale analytics, single cell analysis, stem cell technologies, tissue engineering, in and ex vivo systems as well as in vitro substitute systems for efficacy and toxicity testing.

CLINAM 09/2016covers the entire interdisciplinary spectrum of Nanomedicine and Targeted Medicine from new materials with potential medical applications and enabling technologies over diagnostic and therapeutic translation to clinical applications in infectious, inflammatory and neurodegenerative diseases, as well as diabetes, cancer and regenerative medicine to societal implications, strategical issues, and regulatory affairs. The conference is sub-divided into four different tracks running in parallel and provides ample possibilities for exhibitors as indicated by steadily increasing requests:

Track 1: Clinical and Targeted Nanomedicine Basic Research Disease Mechanisms and Personalized Medicine Regenerative Medicine Novel Therapeutic and Diagnostic Approaches Active and Passive Targeting Targeted Delivery (antibodies, affibodies, aptamers, nano drug delivery devices) Accurin Technology Nano-Toxicology Track 2: Clinical and Targeted Nanomedicine: Translation Unsolved Medical Problems Personalized Medicine and Theranostic Approaches Regenerative Medicine Advanced Breaking and Ongoing Clinical Trials Applied Nanomedical Diagnostics and Therapeutics Track 3: Enabling Technologies Nanomaterial Analytics and Testing Molecular Profiling for Research and Efficacy/Toxicology Testing (Genomics, Proteomics, Glycomics, Lipidomics, Metabolomics) Functional Testing Assays and Platforms Single Cell Analyses Cell Tracking Stem Cell Biology and Engineering Technologies Microfluidics Tissue Engineering Tissues-on-a-Chip Bioprinting In vivo Testing Novel Imaging Approaches Medical Devices Track 4: Regulatory, Societal Affairs and Networking Regulatory Issues in Nanomedicine Strategy and Policy The Patients` Perspective Ethical Issues in Nanomedicine University Village Cutting-Edge EU-Project Presentations Networking for International Consortium Formation

For CLINAM 9 / 16 Last Summit the number of exhibitors increased without investment of acquisition.As from the 9th Summit the CLINAM-Foundation has stepped in to a Partnership with The Congress Center Basel which will invest in a proactive acquisition and management for large foyer exhibition. Based on last years exhibition it is expected to have about 50 Exhibitors at thenext Summit. Exhibitors can profit of the possibility to meet their target visitors on one single spot in Basel at CLINAM 9 / 2016. With this new concept for the exhibition, the international CLINAM-summit becomes also the place for the pulse of the market and early sales in the field of cutting-edge medicine.

The exhibitors are invited to participate in the below in the nomenclature described fields. The list is topic to extensions so that by proposals from exhibitors it will constantly be updated. Strong focus of the exhibition relates to the topics of the conference in which Nanomedicine and Targeted Medicine – presently the most important building blocks in novel Medicine – are debated. The organizers look forward to the interest of the exhibitors to at a moderate investment take the opportunity to meet the community of Nanomedicine, Targeted Medicine and those investing into cutting edge Medicine tools and applications.

The CLINAM- Summit has every year 150 presentations. Many young mist skilled young researchers, young starting entrepreneurs, Engineers and scientists apply for posters and oral presentations. CLINAM offers a first Deadline for those, submitting their work before February 15, 2016 a discount of 20% on the registration fees for Submitters (610.00 ; for students 430.00 ) . The second Deadline after that is April 25, 2016

The Exhibitors at CLINAM 8/2015

The European Foundation for Clinical Nanomedicine is a non-profit institution aiming at advancing medicine to the benefit of individuals and society through the application of nanoscience. Aiming at prevention, diagnosis, and therapy through nanomedicine as well as at exploration of its implications, the Foundation reaches its goals through support of clinically focussed research and of interaction and information flow between clinicians, researchers, the public, and other stakeholders. The recognition of the large future impact of nanoscience on medicine and the observed rapid advance of medical applications of nanoscience have been the main reasons for the creation of the Foundation.

Nanotechnology is generally considered as the key technology of the 21st century. It is an interdisciplinary scientific field focusing on methods, materials, and tools on the nanometer scale, i.e. one millionth of a millimeter. The application of this science to medicine seeks to benefit patients by providing prevention, early diagnosis, and effective treatment for prevalent, for disabling, and for currently incurable medical conditions.

Original post:
CLINAM – The Foundation

Read the Rest...

Sports Medicine | Orthopaedic Surgery and Rehabilitation

§ October 3rd, 2015 § Filed under Nano Medicine Comments Off on Sports Medicine | Orthopaedic Surgery and Rehabilitation

Vanderbilt Sports Medicine leads the orthopaedic community in cutting edge research both locally and nationally. Our physicians have been published in medical journals and have presented at both state and national level conferences. It is our mission to improve the lives of others through science, education and clinical skill. To be the best, we continously are working on creating better surgical techniques, and rehabilitation through our research.

Vanderbilts Sports Medicine Department is fortunate to be the coordinating center for three very large research endeavors that are interested in measuring the short and long-term prognosis of both knee and shoulder injuries using patient-oriented outcome tools.

Kurt P. Spindler, MDAdjoint Professor of Orthopaedic Surgery and Rehabilitation

Charlie L. Cox, MD, MPH Assistant Professor of Orthopaedic Surgery and Rehabilitation Vanderbilt Sports Medicine

Alex B. Diamond, DO, MPHAssistant Professor of Orthopaedic Surgery and Rehabilitation Assistant Professor of Pediatrics Vanderbilt Sports Medicine

Andrew J.M. Gregory, MD, FAAP, FACSM Assistant Professor of Orthopaedic Surgery and Rehabilitation Assistant Professor of Pediatrics

John E. Kuhn, MD Associate Professor of Orthopaedic Surgery and Rehabilitation Chief of Shoulder Surgery Vanderbilt Sports Medicine

Laura Huston Withrow, MS Associate Director, Sports Medicine Research Department of Orthopaedic Surgery and Rehabilitation

Excerpt from:
Sports Medicine | Orthopaedic Surgery and Rehabilitation

Read the Rest...

Journal of Sports Science and Medicine

§ October 3rd, 2015 § Filed under Nano Medicine Comments Off on Journal of Sports Science and Medicine

Current Issue September 2015 – Volume 14, Issue 3 Table of Contents

Research article

477 – 483

Students Perceptions of Motivational Climate and Enjoyment in Finnish Physical Education: A Latent Profile Analysis

Timo Jaakkola, C. K. John Wang, Markus Soini, Jarmo Liukkonen

Research article

484 – 493

Lower Extremity Muscle Activation and Kinematics of Catchers When Throwing Using Various Squatting and Throwing Postures

Yi-Chien Peng, Kuo-Cheng Lo, Lin-Hwa Wang

Research article

494 – 500

Game and Training Load Differences in Elite Junior Australian Football

Brendan Henderson, Jill Cook, Dawson J. Kidgell, Paul B. Gastin

Research article

501 – 506

Reactive Agility Performance in Handball; Development and Evaluation of a Sport-Specific Measurement Protocol

Miodrag Spasic, Ante Krolo, Natasa Zenic, Anne Delextrat, Damir Sekulic

Research article

507 – 514

Tri-Axial Accelerometer-Determined Daily Physical Activity and Sedentary Behavior of Suburban Community-Dwelling Older Japanese Adults

Tao Chen, Kenji Narazaki, Takanori Honda, Sanmei Chen, Yuki Haeuchi, Yu Y Nofuji, Eri Matsuo, Shuzo Kumagai

Research article

515 – 521

Examination of the Effectiveness of Predictors for Musculoskeletal Injuries in Female Soldiers

Einat Kodesh, Eyal Shargal, Rotem Kislev-Cohen, Shany Funk, Lev Dorfman, Gil Samuelly, Jay R. Hoffman, Nurit Sharvit

Research article

522 – 529

Multiple Off-Ice Performance Variables Predict On-Ice Skating Performance in Male and Female Division III Ice Hockey Players

Jeffrey M. Janot, Nicholas M. Beltz, Lance D. Dalleck

Research article

530 – 535

A New Qualitative Typology to Classify Treading Water Movement Patterns

Christophe Schnitzler, Chris Button, James L. Croft, Ludovic Seifert

Review article

536 – 547

Criterion-Related Validity of the 20-M Shuttle Run Test for Estimating Cardiorespiratory Fitness: A Meta-Analysis

Daniel Mayorga-Vega, Pablo Aguilar-Soto, Jess Viciana

Research article

548 – 555

Effects of Nitric Oxide Synthase Inhibition on Fiber-Type Composition, Mitochondrial Biogenesis, and SIRT1 Expression in Rat Skeletal Muscle

Masataka Suwa, Hiroshi Nakano, Zsolt Radak, Shuzo Kumagai

Research article

556 – 561

An Acute Lateral Ankle Sprain Significantly Decreases Physical Activity across the Lifespan

Tricia Hubbard-Turner, Erik A. Wikstrom, Sophie Guderian, Michael J. Turner

Research article

562 – 567

Characterisation of the Mechanical Loads and Metabolic Intensity of the CAPO Kids Exercise Intervention for Healthy Primary School Children

Rossana C. Nogueira, Benjamin K. Weeks, Belinda R. Beck

Research article

568 – 573

Adolescent Self-Reported Physical Activity and Autonomy: A Case for Constrained and Structured Environments?

Jerome N. Rachele, Timo Jaakkola, Tracy L. Washington, Thomas F. Cuddihy, Steven M. McPhail

Research article

574 – 583

Effects of Acute Aerobic Exercise on Executive Function in Older Women

Roseann Peiffer, Lynn A. Darby, Adam Fullenkamp, Amy L. Morgan

Research article

584 – 590

Changes in the Game Characteristics of a Badminton Match: A Longitudinal Study through the Olympic Game Finals Analysis in Mens Singles

Guillaume Laffaye, Michael Phomsoupha, Frdric Dor

Research article

591 – 601

Neuromuscular Activity of Upper and Lower Limbs during two Backstroke Swimming Start Variants

Karla De Jesus, Kelly De Jesus, Alexandre I. A. Medeiros, Pedro Gonalves, Pedro Figueiredo, Ricardo J. Fernandes, Joo Paulo Vilas-Boas

Research article

602 – 605

Ultra-Short-Term Heart Rate Variability is Sensitive to Training Effects in Team Sports Players

Fabio Y. Nakamura, Andrew A. Flatt, Lucas A. Pereira, Rodrigo Ramirez-Campillo, Irineu Loturco, Michael R. Esco

Research article

606 – 619

The Waist Width of Skis Influences the Kinematics of the Knee Joint in Alpine Skiing

Martin Zorko, Bojan Nemec, Jan Babi, Blaz Lenik, Matej Supej

Research article

620 – 626

Segmental Musculoskeletal Examinations using Dual-Energy X-Ray Absorptiometry (DXA): Positioning and Analysis Considerations

Nicolas H. Hart, Sophia Nimphius, Tania Spiteri, Jodie L. Cochrane, Robert U. Newton

Research article

627 – 633

Big Five Personality Traits and Eating Attitudes in Intensively Training Dancers: The Mediating Role of Internalized Thinness Norms

Stphanie Scoffier-Mriaux, Charlne Falzon, Peter Lewton-Brain, Edith Filaire, Fabienne dArripe-Longueville

Research article

634 – 642

The Relative Age Effect and Physical Fitness Characteristics in German Male Tennis Players

Alexander Ulbricht, Jaime Fernandez-Fernandez, Alberto Mendez-Villanueva, Alexander Ferrauti

Research article

643 – 647

The Effect of Training in Minimalist Running Shoes on Running Economy

Sarah T. Ridge, Tyler Standifird, Jessica Rivera, A. Wayne Johnson, Ulrike Mitchell, Iain Hunter

Research article

648 – 656

Cardiorespiratory and Metabolic Responses to Loaded Half Squat Exercise Executed at an Intensity Corresponding to the Lactate Threshold

Jos Luis Mat-Muoz, Ral Domnguez, Manuel Barba, Antonio J. Monroy, Brbara Rodrguez, Pedro Ruiz-Solano, Manuel V. Garnacho-Castao

Research article

657 – 668

The Value of Indirect Teaching Strategies in Enhancing Student-Coaches Learning Engagement

Isabel Mesquita, Patrcia Coutinho, Luciana De Martin-Silva, Bruno Parente, Mrio Faria, Jos Afonso

Research article

669 – 674

Relative Age Affects Marathon Performance in Male and Female Athletes

See original here:
Journal of Sports Science and Medicine

Read the Rest...

Nanotechnology | Capabilities | Exponent

§ October 3rd, 2015 § Filed under Nano Medicine Comments Off on Nanotechnology | Capabilities | Exponent

Nano-engineered materials (NMs) are a diverse class of extremely small-scale (loosely defined as

The small size and design of NMs can confer unique chemical, electrical, magnetic, optical, and thermal properties, which can result in vast improvements for a wide variety of applications. These same properties may also result in unanticipated health and environmental effects. Much can be learned from other small-scale materials that have been well studied, such as ultra-fine particles, welding fumes, and mineral fibers, although some properties will be unique to specific NMs. The feasibility and success of NMs will depend on the ability to safely and reproducibly manufacture uniform (homogeneous) materials with reliable characteristics while avoiding adverse effects on health or the environment during the life cycle of these products. The more that is understood about the factors that control material properties, exposure, and toxicity, the better engineering principles can be applied to reduce potential health and environmental risks.

With more than40 years of experience in solving complex scientific and engineering problems, Exponent is uniquely qualified to assist in the area of NMs. In addition to our recent project experience in assessing various aspects of NMs in products, Exponents scientists have many years of industry experience in nano-scale product manufacturing settings, including manufacturing yield enhancement, process development, materials degradation, process tooling, clean-room science and micro-contamination, defect reduction, root cause, and corrective action analysis. Additionally, our expertise in exposure and risk assessment , materials science, food safety, toxicology of novel substances, and industrial hygiene allows us to comprehensively examine the health, regulatory, and environmental exposures and consequences of product design, manufacturing and production, foreseeable use/misuse, wear, and disposal.

The combination of high-level engineering, technological expertise, and regulatory experience, with strong health sciences, food safety, and environmental practices, provides a complete team to evaluate any issue related to NMs.

Our services include:

Exponent is continually involved in NM-related initiatives, including definition, use, and potential exposures and toxicity of NMs. Our scientists have organized and regularly participate in organized technical symposia and legal education seminars. We have been active participants at regulatory agency hearings (e.g., EPA, FDA) and in standards-setting committees such as the Nanotechnology Standards Panel of the American National Standards Institute.

Recent Exponent projects include:

Publications

Donthu S. Nanopatterning of functional oxide ceramics. VDM Verlag, Dr. Muller Aktiengesellschaft & Co. KG, 2009.

Mowat FS, Tsuji JS. Carbon nanotubes: The next asbestos? ABA Toxic Torts and Environmental Law Committee Newsletter Fall 2009, Fall 2009.

Tsuji JS, Mowat FS, Donthu S, Reitman M. Application of toxicology studies in assessing the health risks of nanomaterials in consumer products. pp. 543580. In: Nantoxicity: From In Vitro and In Vivo Models to Health Risks. S.C. Sahu and D.A. Casciano (eds), John Wiley & Sons, Chichester, West Sussex, UK, 2009.

Crane SP, Bihler C, Gajek M, Goennenwein STB, Brandt MS, Ramesh R. Tuning magnetic properties of magnetoelectric BiFeO3-NiFe2O4 nanostructures. J Magn Magn Mater 2008; 321(4):L5-L9.

Donthu S, Alem N, Pan Z, Li S, Shekhawat G, Dravid V, Benkstein K, Semancik S. Directed fabrication of ceramic nanostructures on fragile substrates using soft-electron beam lithography. IEEE Transactions on Nanotechnology 2008; 7:338.

Martin L, Crane SP, et al. Multiferroics and magnetoelectrics: thin films and nanostructures. J Physics Cond Matt 2008; 20:434220.

Sun T, Donthu SK, Sprung M, DAquila K, Jiang Z, Srivastava A, Wang J, Dravid V. Effect of Pd doping on microstructure and gas sensing performance of nanoporous SnOx thin films. Acta Materialia 2008; 57:1095.

Mowat F, J. Tsuji. Primer on emerging health and environmental issues for nanomaterials. Michigan Defense Trial Counsel Law Quarterly 2006; 23(3):26-30.

Hartzell A, Rotondo J, Foster D. Nanotechnology. ABA Products Liability Newsletter 2006; 17(3).

Tsuji JS, Maynard AD, Howard PC, James JT, Lam C-W, Warheit DB, Santamaria AB. Forum seriesResearch strategies for safety evaluation of nanomaterials, Part IV: Risk assessment of nanoparticles. Tox Sci 2006; 89(1):4250.

Mackay CE, Johns M, Salatas JH, Bessinger B, Perri M. Stochastic probability monitoring to predict the environmental stability of nanoparticles in aqueous suspension. Integr Environ Assess Manag 2006; 2(3):293298.

Presentations

Mowat F. Nano-size me: Responsible development of nanomaterials. Presented at the Defense Research Institute (DRI) Product Liability ConferenceIts Not Easy Being Green: Navigating the New Landscape of Product Liability Law, San Diego, CA, April 15-17, 2009.

Mowat F. Size does matter: The impact of nanotechnology on human health and the environment. Presented to the American Bar Association Tort Trial & Insurance Practice Section, Toxic Torts and Environmental Law Committee, Phoenix, AZ, April 24, 2009.

Tsuji JS, Mowat FS. Application of toxicity studies for risk assessment in the real world. Presentation within workshop on Agglomeration Versus Dispersion: How Nanoparticle Behavior Affects Exposure and Toxicity In Vitro, In Vivo, and in the Real World. Workshop organizer and chairperson. Annual Meeting of the Society of Toxicology. Baltimore, MD, March 1519, 2009.

Crane SP. Magnetoelectric coupling and magnetic anisotropy in nanostructured oxide thin films. Materials Research Society Fall Meeting, Boston, MA, 2008.

Mowat FS. Carbon nanotubes: What the heck are they? Presented at the California section of the American Chemical Society, Oakland, CA, September 17, 2008.

Reitman MTF. Nanotechnology and plastics for medical devices. Capitalizing on Nanoplastics, Intertek PIRA San Antonio TX, February 2008.

Tsuji JS, Mowat FS. Health risks of carbon nanotubes: What can we learn from mineral fibers or ultrafine particulates? Toxicologist 2007; 96(1):7.

Mowat FS, Tsuji JS. Assessment of health risks of carbon nanotubes: Where do we go from here? Toxicologist 2007; 96(1):8.

Tsuji JS, Mowat FS, Kaetzel RS. Approaches for risk assessment and risk management of nanomaterials: Inert metal oxides. Toxicologist 2006; 90(1), Abstract 2201.

Mowat, FS. Emerging issues in health risk assessment of nano-engineered materials. Northern California Society for Risk Analysis, Fall Symposium on Risk Assessment in Homeland Security and Emerging Risk Assessment Issues, Berkeley, CA, October 4, 2007.

Tsuji JS. Expert panel participant. Environmental health: Nanomaterials: nifty or naughty? Society for Environmental Journalists Meeting. Stanford, CA, September 7, 2007.

Tsuji JS, Mowat FS. Exposure and toxicity of nanotechnology in products. Presented at SAMPE. Baltimore, MD, June 37, 2007.

Mowat FS, Hartzell AL, da Silva MG, Tsuji J. Health risk assessment of products containing nano-engineered materials. Abstract 993. Presented at the 10th Annual National Standards and Technology Institute (NSTI) Nanotechnology Conference and Trade Show. Santa Clara, CA, May 2024, 2007.

Mowat FS, Tsuji JS. Assessment of health risks of carbon nanotubes: Where do we go from here? Presented at the 46th Annual Meeting of the Society of Toxicology (SOT). Workshop entitled, “Health risks of carbon nanotubes: What can we learn from mineral fibers or ultrafine particulates?” Charlotte, NC, March 2529, 2007.

Tsuji JS, Mowat FS. Introduction to carbon nanotubes and health concerns. Presented at the 46th Annual Meeting of SOT. Workshop entitled, “Health risks of carbon nanotubes: What can we learn from mineral fibers or ultrafine particulates?” Charlotte, NC, March 2529, 2007.

Mowat FS. Health, safety, and risk management of nanomaterials. Presented at the Society for the Advancement of Materials and Process Engineering (SAMPE), Dallas, TX, November 69, 2006.

Tsuji JS, Mowat FS. Assessment of products containing nanomaterials. Symposium entitled, “Regulating nanotechnology: Developing stakeholder consensus for future rulemaking by EPA, FDA and OSHA.” Presented at the Division of Chemistry and the Law of the 232nd American Chemical Society National Meeting. San Francisco, CA, September 1014, 2006.

Tsuji JS, Mowat FS. Risk assessment of nanoscale metal particles. Presented at the U.S. Environmental Protection Agency Region 5 Nanotechnology for Site Remediation Workshop. Chicago, IL, September 67, 2006.

Mowat FS, Tsuji JS. Nanotechnology and the water market: Applications and health effects. Abstract 747. Presented at 9th Annual National Standards and Technology Institute (NSTI) Nanotechnology Conference and Trade Show. Boston, MA, May 711, 2006.

Tsuji JS, Kaetzel RS, Mowat FS. Approaches for risk assessment and risk management of nanomaterials: Inert metal oxides. Presented at the 44th Annual Meeting of the Society of Toxicology, San Diego, CA, March 59, 2006.

Mowat FS. Nanotoxicity: Lessons learned from other small particles and fibers. Presented at the MIT/Stanford/U.C. Berkeley Nanotechnology Forum at Swissnex entitled, Nanotechnology Applications and Implications: A focus on the health and environmental effects of nanomaterials, San Francisco, CA, December 7, 2005.

Mowat FS. Nanomaterials: Emerging health and environmental issues. Presented at the 2005 Annual Meeting of the Defense Research Institute. Chicago, IL, October 1923, 2005.

Mowat, FS, Yarborough, CM. Nanotoxicity: What can we learn from other small particles and fibers? Presented at the 2nd International Symposium on Nanotechnology and Occupational Health. Proceedings and Final Program, p. 69. Minneapolis, MN, October 36, 2005.

Tsuji, JS. Potential health and environmental risks of nanomaterials. Presented to the American Bar Association. Nashville, TN, September 2005.

Tsuji JS, Mowat FS. Potential benefits and hazards of nanotechnology in water. Session on Natural Poisons and Unnatural Products. American Water Works Association Annual Conference, San Francisco, CA, June 1216, 2005.

Tsuji J, Mackay C. Nanotechnology: Emerging health and environmental issues. Presented as a continuing legal education (CLE) course in Seattle, WA. October 12, 2004.

Read more from the original source:
Nanotechnology | Capabilities | Exponent

Read the Rest...

Nanotechnology News, Articles and Information

§ October 3rd, 2015 § Filed under Nano Medicine Comments Off on Nanotechnology News, Articles and Information

TV.NaturalNews.com is a free video website featuring thousands of videos on holistic health, nutrition, fitness, recipes, natural remedies and much more.

CounterThink Cartoons are free to view and download. They cover topics like health, environment and freedom.

The Consumer Wellness Center is a non-profit organization offering nutrition education grants to programs that help children and expectant mothers around the world.

Food Investigations is a series of mini-documentaries exposing the truth about dangerous ingredients in the food supply.

Webseed.com offers alternative health programs, documentaries and more.

The Honest Food Guide is a free, downloadable public health and nutrition chart that dares to tell the truth about what foods we should really be eating.

HealingFoodReference.com offers a free online reference database of healing foods, phytonutrients and plant-based medicines that prevent or treat diseases and health conditions.

HerbReference.com is a free, online reference library that lists medicinal herbs and their health benefits.

NutrientReference.com is a free online reference database of phytonutrients (natural medicines found in foods) and their health benefits. Lists diseases, foods, herbs and more.

Read the original:
Nanotechnology News, Articles and Information

Read the Rest...

Sports Medicine & Fitness news, research and tips – Philly.com

§ September 29th, 2015 § Filed under Nano Medicine Comments Off on Sports Medicine & Fitness news, research and tips – Philly.com

Salt might be healthy after all.

When it comes to the idea that running is good for the heart, six miles a week may be the magic goal number.

Typically, we exercise to slim down, feel better, and ease our guilt about eating an extra cookie. As a cardiologist, I always remind my patients that including exercise in their lives can also lower blood pressure and decrease the risk of having a heart attack. But those arent the only potentially lifesaving effects from exercise.

Is your workout weighing you down? If the bulk of your gym visit is wasted wandering from machine-to-machine, cut calories and time off your fitness routine by picking and sticking with one piece of equipment to maximize results.

I got depressed after the Eagles lost Marcus Mariota in the NFL draft. I had a glimmer of hope when his contract was slow to be signed, but then I had to accept reality, and now I am ready to root for Sam Bradford. But perhaps Mariota can still help us from afar.

Study shows ancient exercise improves physical ability in those with arthritis, heart failure, emphysema and breast cancer

For years, students were told to sit still and stop fidgeting, but that has changed with the addition of elliptical machines to classrooms at an elementary school.

I know, why in the world am I writing a blog post about a Dallas player? We know Dez Bryant is out next week after surgery on his 5th metatarsal. But will he be back for the November 8th game against Philadelphia which is 7 weeks away?

Take it from a 70-year-old bodybuilder how to schedule your weights routine.

But even when we make the effort to exercise, says new research, the power of our pre-modern selves will not be denied.

We use our hips to run, jump, sit, stand, and make every movement in between. They may be the most important joints in the body, as anyone who needs them replaced can attest.

Excerpt from:
Sports Medicine & Fitness news, research and tips – Philly.com

Read the Rest...

Active Research Projects | Sports Medicine Research

§ September 27th, 2015 § Filed under Nano Medicine Comments Off on Active Research Projects | Sports Medicine Research

Theoretical and correlation data indicate that abnormal patterns of frontal plane knee tracking and knee flexion angle are important factors in the development of overuse injuries in cycling. Currently, bicycle fitters typically rely on visual assessments to apply current theories. However, practitioners are limited by a lack of prospective data, an unknown applicability to the field setting and unvalidated methods that are subjective and experience dependent. The current gold standard for motion analysis, 3D video motion, is largely limited to use in resource rich laboratory settings, and the complex multivariate data can still be difficult to interpret. Here we propose a novel to cycling method of relative accelerometry, employing triaxial accelerometers and functional principal component analysis (fPCA), as a valid cost effective means capable of discriminating between common bicycle fit conditions. Procedure: Ten to 20 experienced competitive subjects age 13 and older, with a good bike fit, and free of biomechanic dysfunction, as determined by the survey and physical assessment, will undergo motion analysis while cycling on a stationary trainer in each one of six randomized fit conditions including current fit, standardized fit, high seat, low seat, varus cleat wedge and valgus cleat wedge. Trials will be recorded simultaneously by manual rating, 2D and 3D video, foot-bed pressure sensors, and triaxial accelerometers.

Read more from the original source:
Active Research Projects | Sports Medicine Research

Read the Rest...

Sports Medicine Research Summary – University of Miami

§ September 27th, 2015 § Filed under Nano Medicine Comments Off on Sports Medicine Research Summary – University of Miami

Sports Medicine Research Summary

(Updated as of 3/22/12)

The UHealth Sports Medicine Research Group has a variety of clinical research projects investigating the outcome of commonly performed procedures. We are able to have a wide variety of ongoing clinical studies because of our close collaboration with other departments within our university including physical therapy, radiology as well as working with other institutions as a participant in multicenter trials. Some examples of this include return to sports/activities after ACL reconstruction or rotator cuff repair or the effect of patient related factors on treatment outcomes. Critically examining the success of surgical procedures allows the physicians in sports medicine to analyze which procedures work well and which can use modification. It also allows for the surgeons to give their patients more substantial information in terms of expected recovery after these procedures.

In collaboration with our physical therapy department, the sports research team is investigating baseball pitchers and catchers throwing mechanics and how different changes in body position or stance affect throwing. This will allow our physicians to assist throwing athletes to achieve his or her maximal performance in the safest way possible. Another study with the physical therapy department is studying different ACL graft choices and how that affects muscle endurance and fatigue.

We are working on multiple studies with our board certified musculoskeletal radiologists as well. Current ongoing projects include the MRI findings of asymptomatic professional baseball pitchers as well as the usefullnesss of ultrasonography in the treatment of common sports related injuries. Several upcoming radiologic studies will focus on MRIs and articular cartilage injury.

In conjunction with the Hussman Institute & the department of Biomedical Engineering, the UHealth Sports Medicine team is studying what, if any, impact genetics has on the bodys response to cartilage and meniscal injury. This team collaboration has been the winner of recent competitive grants as well as upcoming national presentations and publications.

The UHealth Sports Medicine Group is very happy to announce its latest collaboration with The University of Miami Stem Cell Institute. This latest partnership has enabled us to begin several research projects investigating the potential use of human stem cells in the treatment of ligament and cartilage injuries. This cutting edge research is currently being performed in animal models with the goal to translate the results into practical application in our sports medicine patients.

Our basic science interests include projects on ACL graft strain after anatomic single and double bundle reconstruction. We also have numerous biomechanical studies being developed for common knee and shoulder injuries.

The Sports Medicine Research Team:

Continue reading here:
Sports Medicine Research Summary – University of Miami

Read the Rest...

Nanomedicine Awards 2015

§ September 25th, 2015 § Filed under Nano Medicine Comments Off on Nanomedicine Awards 2015

The 2nd edition of the Nanomedicine Award aims to reward projects that have developed innovative solutions based on nanomedicine that can ultimately change the way diseases are treated or diagnosed and that could provide new tools for physicians and large benefits to patients.

Open to companies, academic and private researchers from European and non-European countries, the Nanomedicine Award aims to honor the best international nanomedicine innovations. Proposals will be evaluated in two areas: Early clinical stage project Award and Best product / deal Award for application in diagnostic, therapeutic or regenerative medicine.

All applications will be reviewed and assessed by a panel of highly-qualified pharma industry specialists with experience in R&D and commercial roles. The reviewers are:

The European Technology Platform for Nanomedicine (ETPN) together with an EU funded consortium named ENATRANS are organizing the second edition of the Nanomedicine Award.

Further information can be found here and on the ETPN website

The Nanomedicine Award is supported by EBD Group and the award ceremony will take place during BIO-Europe 2015. The 21th annual BIO-Europe event will be the largest biotechnology partnering conference held in Europe. Over 3,200 international decision makers from biotech, pharma and finance along with the most promising start-ups and emerging companies, representing upwards of 1,800 companies, annually attend BIO-Europe to identify new business opportunities and develop strategic relationships. BIO-Europe features the industrys most advanced web-based partnering system enabling delegates from all parts of the biotechnology value chain to quickly identify, engage and enter into strategic relationships that drive their business successfully forward. BIO-Europe will take place November 2-4, 2015 in Munich, Germany.

To learn more visit the BIO-Europe website

Read more:
Nanomedicine Awards 2015

Read the Rest...

nanoDDS 2015 | September 16 18, 2015

§ September 25th, 2015 § Filed under Nano Medicine Comments Off on nanoDDS 2015 | September 16 18, 2015

Thank you for making nanoDDS 2015 a success. Conference photos are available in the galleries below. If youd like any full-resolution versions of images in these galleries for high-quality printing, pleaseemail Erik Liu.

Dropbox

Baidu

The 13th International Nanomedicine & Drug Delivery Symposium (nanoDDS 2015) was chaired by University of Washington Professors Patrick Stayton and Suzie Pun and will be held at the University of Washington on September 16-18, 2015.

The symposium followed nanoDDS 2014 Carolina, which was co-chaired by Kam Leong (James B. Duke Professor of Biomedical Engineering at Duke University) and Alexander V. Kabanov (Director, Center for Nanotechnology in Drug Delivery; Mescal S. Ferguson Distinguished Professor; Codirector, Carolina Institute for Nanomedicine at the University of North Carolina at Chapel Hill).

nanoDDS is the key annual event for researchers developing next-generation delivery vehicles targeted, responsive, biodegradable nanomaterials to make diagnostics more sensitive and drugs more effective. Since 2003 nanoDDS has been held annually in different locations across North America. Over years it has attracted more than 2,000 participants from 30 different countries and became one of the most authoritative forums in its field. Each year the meeting comes to a different University campus, thereby promoting knowledge and becoming a major world-class scientific event for its students and scholars.

See this years speakers

Download the nanoDDS 2015 Program Schedule

Learn more about previous and future symposiaat nanodds.org

Go here to see the original:
nanoDDS 2015 | September 16 18, 2015

Read the Rest...

Nanomedicine: The Future of Medicine: Megatrends in …

§ September 20th, 2015 § Filed under Nano Medicine Comments Off on Nanomedicine: The Future of Medicine: Megatrends in …

A nanometer is one billionth of a meter. New science and technology based on the nanometer refers to the ability to manipulate individual atoms and molecules to build machines on a scale of nanometers or to create materials and structures from the bottom up with novel properties.

Nanotechnology, according to the National Science Foundation, could change the way almost everything is designed and made, from automobile tires to vaccines to objects not yet imagined. The concept is to prepare “smart objects” that can invade small spaces and target specific parts of the body. Some researchers expect nanoscience to have a profound impact on the way medicine is practiced.

The National Institutes of Health has established a “roadmap” to guide its research directions over the coming years and the roadmap includes specific reference to nanomedicine. “What if doctors could search out and destroy the very first cancer cells that would otherwise have caused a tumor to develop in the body? What if a broken part of a cell could be removed and replaced with a miniature biological machine? What if pumps the size of molecules could be implanted to deliver life-saving medicines precisely when and where they are needed?” These scenarios may sound unbelievable but they are the long-term goals of the NIH Roadmap to Nanomedicine Initiative that we anticipate will yield medical benefits as early as five to seven years from now.

Nanomedicine and biotechnology can be integrated and some see this as perhaps the most exciting scientific and economic development opportunity since the creation of the information technology revolution in the Silicon Valley several decades ago. They see the potential for major improvements in health care, the creation of revolutionary new “smart” materials and the development of a new generation of environmental sensors as real possibilities. They see that this can rapidly improve the ability to sequence the human genome, develop new techniques for characterizing the internal structure of cells, and allow scientists to duplicate the properties of the molecular machines found in living systems.

So let’s consider nanodevices which have been defined by the government as meaning 1)smaller than 100nm (nanometers) – or much smaller than can even be seen with a microscope- with 2)a new function and 3)an ability to be controlled externally. The concept is that smaller is better and that recent advances in medicine and nanotechnology can converge. So scientists are making nanoparticles that can be controlled and that function in new ways and that can get to a cell or get inside the correct cell and deliver a payload such as a drug.

In the field of diabetes the great hope has long been to find a form of insulin that can be taken by mouth. Today, the enzymes in our stomachs and intestines break down the insulin before it can be absorbed into our blood stream. But scientists are trying to fabricate a porous silicone particle that can travel across the intestinal cell wall and deliver insulin instantly to the blood. If this could be done it would be like finding the Holy Grail of diabetes – oral insulin. The studies so far have demonstrated an increase in insulin transport across the cell wall by a factor of 10. This is not enough but it does show a proof of principle, which encourages those working in this field.

Here is another example. A “nanotube” can be formed from silicone dioxide or other similar materials. Actually they form naturally in the right setting but then can be designed to carry certain attachments such as drugs, antibodies or diagnostic devices or indeed all three of these. A nanotube can be made from a naturally magnetic material such as magnetite; can have drugs placed inside the tubule and can have a targeting molecule such as a monoclonal antibody placed on the surface of the tubule. Now the nanotubules are injected into the blood stream via a vein and travel through the body until that monoclonal antibody finds the site that it has been directed to such as a cancerous cell. The tubule now binds tightly to the cancer cell and because it is magnetic it can be detected with an MRI. Now we know where the cancer cell is and that our nanotube is attached to it, and the drug in the tube is now in high concentration right at the site of the cancer cell and nowhere else in the body. This is an example of how medicine can become personalized to the individual patient. In the United States about 1.4 million cases of cancer are diagnosed per year, and about 600,000 people die from it. More than 200 types of cancer exist, each with multiple subtypes or variants. With nanoparticles it should be possible to get right to that cancer – improving the diagnosis, imaging and treatment — all done with one particle that can target just that cancer cell but not the normal cell, image the cancer cell and deliver the drug.

Here are some other approaches to cancer diagnostics. Another type of nanoparticle is a silicone based “nanowire” device. It is designed to recognize electrically minute levels of marker proteins that are over produced in cancer cells and which then circulate in the bloodstream. I mentioned magnetic emitting nanoparticles earlier. Some new techniques have created the ability to detect breast cancer cells in mice when the tumor is just half a millimeter in size – smaller than this letter o.

In the field of therapeutics any number of drugs or monoclonal antibodies can be attached nanoparticles and be potentially effective. Again the concept is to get the drug in high concentrations to exactly where it is needed yet not cause side effects with other cells in the body. This type of approach will mean producing “drugs” for each type of cancer. This is quite different than today’s drug development approach of, more or less, one size fits all. As mentioned elsewhere and I will repeat here, the concept of personalized medicine means that drugs will be designed for increasingly specific indications. No one drug will be sold in large quantities. The large pharmaceutical companies are always looking for a “blockbuster” drug – a drug that they can sell more than a billion dollars worth of per year. Given this inclination, I wonder whether the big pharmaceutical companies will show an interest in this personalized medicine approach of individualized medications. If not, then smaller, entrepreneurial companies will pick up the slack.

For sure, nanomedicine’s time is coming and it will have a major impact.

Last Modified: June 11, 2010

Follow this link:
Nanomedicine: The Future of Medicine: Megatrends in …

Read the Rest...

Nanomedicine Research Center – Cedars-Sinai

§ September 20th, 2015 § Filed under Nano Medicine Comments Off on Nanomedicine Research Center – Cedars-Sinai

Director: Julia Y. Ljubimova, MD, PhD

Faculty members: Eggehard Holler, PhD; Hui Ding, PhD; J. Manuel Perez, PhD; Rameshwar Patil, PhD; Jos Portilla-Arias, PhD; Pallavi Gangalum, PhD; Szu-Ting Chou, PhD; Anna Galstyan, MD, PhD; and Helena Kozlova, MBA.

For more information on research conducted at the Nanomedicine Research Center, visit the Ljubimova Laboratory.

The Nanomedicine Research Center at the Cedars-Sinai Department of Neurosurgery was established in August 2011. Julia Ljubimova, MD, PhD, leads the nanomedicine research team that includes synthetic chemists, pharmacologists, molecular biologists, radiologists and clinical oncologists.

The main goal of the nanomedicine research team is to engineer and synthesize effective nanomedicines for imaging and treatment of primary and metastatic cancers, including brain gliomas and primary and metastatic (secondary) HER2-positive and triple negative breast and lung cancers, which are incurable with current therapy. These nanodrugs can be intravenously delivered across the blood-brain barrier (BBB) and have been shown to be effective in treating gliomas, as well as breast cancer and brain metastasis from primary lung and breast tumors in mice.

The Nanomedicine Research Center has been awarded $11.5 million by NIH/NCI grants for developing and establishing a novel class of anti-cancer imaging and treatment agents, the latest evolution of molecular drugs designed to slow or stop cancers by blocking them in multiple ways. The ultimate goal is to bring these novel classes of imaging and treatment nanomedicines to the clinical practice.

Compared with conventional chemotherapy, the novel nanodrugs developed at the Cedars-Sinai Nanomedicine Research Center are more effective for treating experimental primary and secondary tumors by increasing the concentration of the anti-cancer drug directly at the tumor site while decreasing general toxicity and immunogenicity. By using the alternative nanodrug delivery mechanisms, scientists can aid in fighting the multidrug resistance that is the hallmark of cancer cells.

The new generation of nanomedicine imaging agents and drugs aim to

The nanodrugs are biodegradable and nontoxic for patients and are able to deliver multiple anti-tumor inhibitors simultaneously directly to cancer cells. In addition, nanodrugs prevent and/or overcome drug resistance and improve the efficacy of treatment, leading to improved quality of cancer patients’ lives. Engineered drugs can be adapted for each cancer patient, with adjustments for individual tumor genome/proteome profiles for treatment of primary tumors and for patients’ tumor progression.

Environmental nano pollution and its influence leading to the development of brain tumors and neurodegenerative disorders are under intensive investigation at the Nanomedicine Research Center.

The Nanomedicine Research Center is a part of the NIH/NCI Alliance for Nanotechnology in Cancer 20102015, which engages the nation’s leading nanomedicine centers in a collaborative effort aimed at accelerating use of nanotechnology to advance cancer diagnosis, treatment and prevention.

Nanomedicine Research Center is multidisciplinary, combining collaborations across a number of departments at Cedars-Sinai, including:

Through these collaborations, we are able to design drugs in the laboratory and test them on animal models.

Patil R, Ljubimov AV, Gangalum PR, Ding H, Portilla-Arias J, Wagner S, Inoue S, Konda B, Rekechenetskiy A, Chesnokova A, Markman JL, Ljubimov VA, Li D, Prasad RS, Black KL, Holler E, Ljubimova JY. MRI virtual biopsy and treatment of brain metastatic tumors with targeted nanobioconjugates. ACS Nano. 2015. [In press.]

Patil R, Gangalum PR, Wagner S, Portilla-Arias J, Ding H, Rekechenetskiy A, Konda B, Inoue S, Black KL, Ljubimova JY, Holler E. Curcumin targeted, polymalic acid-based MRI contrast agent for the detection of A plaques in Alzheimer’s disease. Macromol Biosci. 2015 Jun 2. http://onlinelibrary.wiley.com/doi/10.1002/mabi.201500062/abstract. [Epub ahead of print]

Hsu BB, Hagerman SR, Jamieson K, Castleberry SA, Wang W, Holler E, Ljubimova JY, Hammond PT. Multifunctional self-assembled films for rapid hemostat and sustained anti-infective delivery. ACS Biomater Sci Eng. 2015;1(3):148-156. http://pubs.acs.org/doi/abs/10.1021/ab500050m.

Hsu BB, Jamieson KS, Hagerman SR, Holler E, Ljubimova JY, Hammond PT. Ordered and kinetically discrete sequential protein release from biodegradable thin films. Angew Chem Int Ed Engl. 2014 Jul 28;53(31):8093-8098. http://onlinelibrary.wiley.com/doi/10.1002/anie.201403702/abstract;jsessionid=DF6B56E755 BAD775EDBBC9E7C7F5A7BB.f04t01.

Hsu BB, Hagerman SR, Jamieson K, Veselinovic J, O’Neill N, Holler E, Ljubimova JY, Hammond PT. Multilayer films assembled from naturally-derived materials for controlled protein release. Biomacromolecules. 2014 Jun 9;15(6):2049-2057. http://pubs.acs.org/doi/abs/10.1021/bm5001839.

Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Black KL, Chakravarty D, Sanborn JZ, Berman SH, Ljubimova JY, et al; TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell. 2013 Oct 10;155(2):462-477. http://www.cell.com/cell/abstract/S0092-8674(13)01208-7.

Ljubimova JY, Ding H, Portilla-Arias J, Patil R, Gangalum PR, Chesnokova A, Inoue S, Rekechenetskiy A, Nassoura T, Black KL, Holler E. Polymalic acid-based nano biopolymers for targeting of multiple tumor markers: an opportunity for personalized medicine? J Vis Exp. 2014 Jun 13;(88). http://www.jove.com/video/50668/polymalic-acid-based-nano-biopolymers-for-targeting-multiple-tumor.

Ljubimova JY, Portilla-Arias J, Patil R, Ding H, Inoue S, Markman JL, Rekechenetskiy A, Konda B, Gangalum PR, Chesnokova A, Ljubimov AV, Black KL, Holler E. Toxicity and efficacy evaluation of multiple targeted polymalic acid conjugates for triple-negative breast cancer treatment. J Drug Target. 2013 Dec;21(10):956-967. http://informahealthcare.com/doi/abs/10.3109/1061186X.2013.837470.

Ljubimova JY, Kleinman MT, Karabalin NM, Inoue S, Konda B, Gangalum P, Markman JL, Ljubimov AV, Black KL. Gene expression changes in rat brain after short and long exposures to particulate matter in Los Angeles basin air: comparison with human brain tumors. Exp Toxicol Pathol. 2013 Nov;65(7-8):1063-1071. http://www.sciencedirect.com/science/article/pii/S0940299313000547.

Ding H, Helguera G, Rodrguez JA, Markman J, Luria-Prez R, Gangalum P, Portilla-Arias J, Inoue S, Daniels-Wells TR, Black K, Holler E, Penichet ML, Ljubimova JY. Polymalic acid nanobioconjugate for simultaneous immunostimulation and inhibition of tumor growth in HER2/neu-positive breast cancer. J Control Release. 2013 Nov 10;171(3):322-329. http://www.sciencedirect.com/science/article/pii/S0168365913003350.

Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Deliv Rev. 2013 Nov;65(13-14):1866-1879. http://www.sciencedirect.com/science/article/pii/S0169409X13002329.

Ljubimova JY, Holler E. Biocompatible nanopolymers: the next generation of breast cancer treatment? Nanomedicine (Lond.) 2012 Oct;7(10):1467-1470. http://www.futuremedicine.com/doi/abs/10.2217/nnm.12.115.

Patil R, Portilla-Arias J, Ding H, Konda B, Rekechenetskiy A, Inoue S, Black KL, Holler E, Ljubimova JY. Cellular delivery of doxorubicin via pH-controlled hydrazone linkage using multifunctional nano vehicle based on poly(-L-malic acid). Int J Mol Sci. 2012;13(9):11681-11693. http://www.mdpi.com/1422-0067/13/9/11681.

Inoue S, Patil R, Portilla-Arias J, Ding H, Konda B, Espinoza A, Mongayt D, Markman JL, Elramsisy A, Phillips HW, Black KL, Holler E, Ljubimova JY. Nanobiopolymer for direct targeting and inhibition of EGFR expression in triple negative breast cancer. PLOS One. 2012;7(2):e31070. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0031070.

Inoue S, Ding H, Portilla-Arias J, Hu J, Konda B, Fujita M, Espinoza A, Suhane S, Riley M, Gates M, Patil R, Penichet ML, Ljubimov AV, Black KL, Holler E, Ljubimova JY. Polymalic acid-based nanobiopolymer provides efficient systemic breast cancer treatment by inhibiting both HER2/neu receptor synthesis and activity. Cancer Res. 2011 Feb 15;71(4):1454-1464. http://cancerres.aacrjournals.org/content/71/4/1454.

Patil R, Portilla-Arias J, Ding H, Inoue S, Konda B, Hu J, Wawrowsky KA, Shin PK, Black KL, Holler E, Ljubimova JY. Temozolomide delivery to tumor cells by a multifunctional nano vehicle based on poly(-L-malic acid). Pharm Res. 2010; 27(11):2317-2329. http://link.springer.com/article/10.1007%2Fs11095-010-0091-0.

Follow this link:
Nanomedicine Research Center – Cedars-Sinai

Read the Rest...

Learn About Nanotechnology in Cancer

§ September 19th, 2015 § Filed under Nano Medicine Comments Off on Learn About Nanotechnology in Cancer

Nanotechnologythe science and engineering of controlling matter, at the molecular scale, to create devices with novel chemical, physical and/or biological propertieshas the potential to radically change how we diagnose and treat cancer. Although scientists and engineers have only recently (ca. 1980’s) developed the ability to industrialize technologies at this scale, there has been good progress in translating nano-based cancer therapies and diagnostics into the clinic and many more are in development.

Nanoscale objectstypically, although not exclusively, with dimensions smaller than 100 nanometerscan be useful by themselves or as part of larger devices containing multiple nanoscale objects. Nanotechnology is being applied to almost every field imaginable including biosciences, electronics, magnetics, optics, information technology, and materials development, all of which have an impact on biomedicine. Explore the world of nanotechnology

Nanotechnology can provide rapid and sensitive detection of cancer-related targets, enabling scientists to detect molecular changes even when they occur only in a small percentage of cells. Nanotechnology also has the potential to generate unique and highly effective theraputic agents. Learn about nanotechnology in cancer research

The use of nanotechnology for diagnosis and treatment of cancer is largely still in the development phase. However, there are already several nanocarrier-based drugs on the market and many more nano-based therapeutics in clinical trials. Read about current developments

Continued here:
Learn About Nanotechnology in Cancer

Read the Rest...

« Older Entries Newer Entries »





Page 10«..9101112..2030..»